ライブラリ登録: Guest
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集
Atomization and Sprays
インパクトファクター: 1.262 5年インパクトファクター: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 1.6

ISSN 印刷: 1044-5110
ISSN オンライン: 1936-2684

巻:
巻 29, 2019 巻 28, 2018 巻 27, 2017 巻 26, 2016 巻 25, 2015 巻 24, 2014 巻 23, 2013 巻 22, 2012 巻 21, 2011 巻 20, 2010 巻 19, 2009 巻 18, 2008 巻 17, 2007 巻 16, 2006 巻 15, 2005 巻 14, 2004 巻 13, 2003 巻 12, 2002 巻 11, 2001 巻 10, 2000 巻 9, 1999 巻 8, 1998 巻 7, 1997 巻 6, 1996 巻 5, 1995 巻 4, 1994 巻 3, 1993 巻 2, 1992 巻 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.2015010398
pages 837-856

FLASHING BEHAVIOR OF ROCKET ENGINE PROPELLANTS

Grazia Lamanna
Institute of Aerospace Thermodynamics, Universitat Stuttgart, Germany
H. Kamoun
Institute of Aerospace Thermodynamics, Universitat Stuttgart, Germany
Bernhard Weigand
Universität Stuttgart
Chiara Manfletti
Institute of Space Propulsion, German Aerospace Center (DLR), Germany
A. Rees
Institute of Space Propulsion, German Aerospace Center (DLR), Germany
Joachim Sender
Institute of Space Propulsion, German Aerospace Center (DLR), Germany
Michael Oschwald
DLR German Aerospace Center, Lampoldshausen, Baden-Württemberg, 74239, Germany
Johan Steelant
The European Space Research and Technology Center, Noordwijk, Netherlands

要約

This paper investigates the morphology of a flash-atomizing jet at conditions representative for rocket engine operations. Due to its relevance for the aerospace industry, both storable and cryogenic rocket engine propellants are considered, namely ethanol [as inert equivalent of monomethyl hydrazine (MMH)] and liquid oxygen (LOx). A comparison between the flashing behavior of these two fluids is conducted. Despite the differences in their physical properties, a close similarity in the spray characteristics is found in terms of spray shape, spreading angles, and evolution of the flashing regimes as a function of the initial superheat. Based on this similarity, the applicability of a novel, nucleation-based onset criterion (χ parameter) for the fully flashing regime is verified for cryogenic propellants, showing a satisfactory agreement. This result has important implications. First, it corroborates that jet disintegration at highly superheated conditions is mainly controlled by the kinetics of phase transitions (i.e., the nucleation rate). Second, it explains the differences in the degree of superheat (Rp) at onset of the fully flashing regime between ethanol and LOx sprays, respectively. The low operating temperatures in cryogenic systems result in a significant increase of the energy barrier to nucleation. Consequently, the inception of nucleate boiling can occur either at significantly higher Rp values (homogeneous process) or may be triggered by heterogeneous effects. The associated increase of the χ parameter at the onset provides a good indication of the transition to heterogeneous nucleate boiling.


Articles with similar content:

STATE OF THE ART REVIEW OF FLASH-BOILING ATOMIZATION
Atomization and Sprays, Vol.26, 2016, issue 12
Tali Bar-Kohany, Moti Levy
EFFECT OF OPERATING CONDITIONS AND FUEL VOLATILITY ON DEVELOPMENT AND VARIABILITY OF SPRAYS FROM GASOLINE DIRECT-INJECTION MULTIHOLE INJECTORS
Atomization and Sprays, Vol.19, 2009, issue 3
Pavlos Aleiferis, Z. van Romunde
ARTIFICIAL CONTROL OF SPRAY DYNAMICS APPLYING FUEL DESIGN APPROACH RELATED TO FLASH BOILING
Atomization and Sprays, Vol.27, 2017, issue 7
Eriko Matsumura, Jiro Senda
AN EXPERIMENT STUDY ON PHENOMENON AND MECHANISM OF FLASH BOILING SPRAY FROM A MULTI-HOLE GASOLINE DIRECT INJECTOR
Atomization and Sprays, Vol.23, 2013, issue 5
Shenghua Yang, Zhiping Song, Zhuo Yao, Tianyou Wang
DEVELOPMENT AND VALIDATION OF A CASCADE ATOMIZATION AND DROP BREAKUP MODEL FOR HIGH-VELOCITY DENSE SPRAYS
Atomization and Sprays, Vol.14, 2004, issue 3
Franz X. Tanner