ライブラリ登録: Guest
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集
Atomization and Sprays
インパクトファクター: 1.262 5年インパクトファクター: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 1.6

ISSN 印刷: 1044-5110
ISSN オンライン: 1936-2684

巻:
巻 29, 2019 巻 28, 2018 巻 27, 2017 巻 26, 2016 巻 25, 2015 巻 24, 2014 巻 23, 2013 巻 22, 2012 巻 21, 2011 巻 20, 2010 巻 19, 2009 巻 18, 2008 巻 17, 2007 巻 16, 2006 巻 15, 2005 巻 14, 2004 巻 13, 2003 巻 12, 2002 巻 11, 2001 巻 10, 2000 巻 9, 1999 巻 8, 1998 巻 7, 1997 巻 6, 1996 巻 5, 1995 巻 4, 1994 巻 3, 1993 巻 2, 1992 巻 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.2016014272
pages 1241-1257

EFFECT OF THE PROPELLANT MASS FRACTION IN A BINARY MIXTURE ON THE SPRAY CHARACTERISTICS AS GENERATED BY HOMOGENEOUS FLASH BOILING

Moti Levy
Faculty of Aerospace Engineering, Technion - Israel Institute of Technology, Haifa, Israel
Yeshayahou Levy
Faculty of Aerospace Engineering, Technion - Israel Institute of Technology, Haifa, Israel
Eran Sher
Ben-Gurion University of Negev, Israel

要約

When a binary mixture of a high vapor pressure propellant and a low vapor pressure component is injected through a simple atomizer at high enough pressure, flash boiling of the propellant may occur. Due to the sudden depressurization, propellant-vapor nuclei are developed to a rapid evaporation, resulting in break-up of the liquid mixture into a fine spray that is characterized by tiny and fairly uniform droplets. This method is presently used in quite a number of applications. Depending on the initial conditions we distinguish between heterogeneous and homogeneous nucleation. Flash-boiling process within the aperture leads to highly efficient atomization. Finer sprays are achieved when increasing the superheating degree; thus, homogeneous nucleation is apparently the preferred regime for atomization. Nevertheless, experimental studies involving atomization under homogeneous nucleation regime are rather scarce. In the present work we study the effect of the propellant mass fraction in a binary mixture on the spray characteristics as generated by a homogeneous flash-boiling process. We have selected Chlorodifluoromethane (CHClF2 or R-22), and PMX-200 silicon oil as the two components of the mixture and studied the effect of the mixing ratio on the droplets' velocity and size distribution and the radial distribution of the droplets' velocity and size. We used a TSI's Phase Doppler Particle Analyzer (PDPA) to characterize the spray, and a controlled 3D positioning system to measure the droplets characteristics at accurate and specific positions. We show that lowering the mass fraction of the propellant results in a progressively higher value of the mean velocity at any radial distance, a higher mean droplets' size, and a higher standard deviation. For the present homogeneous nucleation flash-boiling atomization system, we found that the break-up efficiency, as defined by Sher and Zeigerson-Katz [Atomization Sprays, vol. 6, no. 4 (1996)], is rather low, on the order of 10−6, while a higher propellant mass fraction yields a lower process efficiency. The lower efficiency is attributed to the different mechanisms of spray formation in homogeneous and heterogeneous nucleation.


Articles with similar content:

Turbulence Modulation in a Simplex Spray
International Journal of Fluid Mechanics Research, Vol.24, 1997, issue 1-3
Muh-Rong Wang, D. Y. Huang, Wei-Hsiang Lai
PRESSURE—SWIRL ATOMIZATION OFWATER-IN-OIL EMULSIONS
Atomization and Sprays, Vol.20, 2010, issue 12
Christopher D. Bolszo, William A. Sirignano, Adrian A. Narvaez, Vincent McDonell, Derek Dunn-Rankin
DYNAMIC SURFACE TENSION OF GASOLINE AND ALCOHOL FUEL BLENDS
Atomization and Sprays, Vol.27, 2017, issue 1
Eran Sher, R. Freud, O. Levi
Energy exchange in magnetohydrodynamic decaying isotropic turbulence
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2009, issue
Benjamin M. Riley, Sharath S. Girimaji, Jacques C. Richard
EFFERVESCENT ATOMIZATION OF HIGH-VISCOSITY FLUIDS: PART I. NEWTONIAN LIQUIDS
Atomization and Sprays, Vol.1, 1991, issue 3
Paul E. Sojka, Harry N. Buckner