ライブラリ登録: Guest
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集
Atomization and Sprays
インパクトファクター: 1.262 5年インパクトファクター: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 1.6

ISSN 印刷: 1044-5110
ISSN オンライン: 1936-2684

巻:
巻 29, 2019 巻 28, 2018 巻 27, 2017 巻 26, 2016 巻 25, 2015 巻 24, 2014 巻 23, 2013 巻 22, 2012 巻 21, 2011 巻 20, 2010 巻 19, 2009 巻 18, 2008 巻 17, 2007 巻 16, 2006 巻 15, 2005 巻 14, 2004 巻 13, 2003 巻 12, 2002 巻 11, 2001 巻 10, 2000 巻 9, 1999 巻 8, 1998 巻 7, 1997 巻 6, 1996 巻 5, 1995 巻 4, 1994 巻 3, 1993 巻 2, 1992 巻 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.v3.i2.60
pages 203-221

SPRAY GROUP COMBUSTION IN A CYLINDRICAL NONPREMIXED COMBUSTOR

Tsung-Leo Jiang
Institute of Aeronautics and Astronautics, National Cheng Kung University, Tainan, Taiwan 70101 ROC
Huei-Huang Chiu
Institute of Aeronautics and Astronautics, National Cheng Kung University, Tainan, Taiwan,70101, ROC

要約

The present spray combustion computation studies numerically the effects of spray angles and injected droplet sites on the combustion efficiency and combustion modes of a cylindrical, nonpremixed combustor through implementation of a realistic droplet combustion model. Combustion efficiency increases with increasing spray cone angle, achieving a maximum value at an optimal injected mean droplet size. The predicted combustion modes indicate that fuel is consumed by the complementary processes of droplet and gas-phase combustion, and are significantly influenced by both spray cone angle and injected mean droplet size. Two flame patterns are identified based on injected droplet size. Small droplet spray is characterized by a diffusion flame separating the fuel and air streams, while large droplet spray exhibits intense mixed droplet and gas-phase combustion near the combustor watt. The results show that combustion efficiency for the former and latter increases and decreases, respectively, with increasing injected droplet sizes. The optimal injected droplet size is therefore suggested to occur at the transition between these two flame patterns.


Articles with similar content:

STATE OF THE ART REVIEW OF FLASH-BOILING ATOMIZATION
Atomization and Sprays, Vol.26, 2016, issue 12
Tali Bar-Kohany, Moti Levy
GROUP COMBUSTION BEHAVIOUR OF DROPLETS IN A PREMIXED SPRAY FLAME
ICLASS 94
Proceedings of the Sixth International Conference on Liquid Atomization and Spray Systems, Vol.0, 1994, issue
K. Nakabe, Yukio Mizutani, Masashi Katsuki, Fumiteru Akamatsu
COMPARISON OF WATER-IN-OIL EMULSION ATOMIZATION CHARACTERISTICS FOR LOW- AND HIGH-CAPACITY PRESSURE-SWIRL NOZZLES
Atomization and Sprays, Vol.21, 2011, issue 5
Vincent G. McDonell, Christopher D. Bolszo, William A. Sirignano, Adrian A. Narvaez, Derek Dunn-Rankin
A SIMPLE APPLICATION OF THE SPRAY-FLAMELET APPROACH TO THE SIMULATION OF BIPHASIC AND MULTI-COMPONENT FUEL WITH NON-UNITY LEWIS NUMBERS
Atomization and Sprays, Vol.27, 2017, issue 4
Daniela Maionchi
EXPERIMENTS ON AIR-ASSIST SPRAY AND SPRAY FLAMES
Atomization and Sprays, Vol.11, 2001, issue 6
Min Su Paek, Sang Heun Oh, Dong Il Kim