ライブラリ登録: Guest
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集
Atomization and Sprays
インパクトファクター: 1.262 5年インパクトファクター: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 1.6

ISSN 印刷: 1044-5110
ISSN オンライン: 1936-2684

巻:
巻 29, 2019 巻 28, 2018 巻 27, 2017 巻 26, 2016 巻 25, 2015 巻 24, 2014 巻 23, 2013 巻 22, 2012 巻 21, 2011 巻 20, 2010 巻 19, 2009 巻 18, 2008 巻 17, 2007 巻 16, 2006 巻 15, 2005 巻 14, 2004 巻 13, 2003 巻 12, 2002 巻 11, 2001 巻 10, 2000 巻 9, 1999 巻 8, 1998 巻 7, 1997 巻 6, 1996 巻 5, 1995 巻 4, 1994 巻 3, 1993 巻 2, 1992 巻 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.v15.i2.30
pages 145-168

EFFERVESCENT ATOMIZATION OF LIQUIDS

Marc Lorcher
Bayer AG, BTS-ENG-CP-ACSC, Rheinufer 7-9, R85, 47829 Krefeld, Germany
Florian Schmidt
University of Hannover, Institut fur Verfahrenstechnik (Process Engineering), Callinstr. 36, 30167 Hannover, Germany
Dieter Mewes
University of Hannover, Institut fur Verfahrenstechnik (Process Engineering), Callinstr. 36, 30167 Hannover, Germany

要約

Liquids or suspensions are dispersed into sprays of small droplets by atomization of two-phase gas-liquid mixtures. Thus narrow droplet diameter distributions and a high interface area density of the liquid phase are generated in order to increase heat and mass transfer. The mean droplet diameter of the spray is time dependent. It also depends on the total pressure upstream from the nozzle, the volumetric flow rates of the liquid and the gas phase, as well as on the flow regime inside the nozzle. The radial and axial profiles of the void fraction inside the nozzle are measured with an electrical measurement technique. In addition, the flow in the nozzle is visualized by a high-speed camera. Three flow regimes are identified. A model is established to predict the flow regime inside the atomizer. It turns out that the flow regime changes by accelerating the flow to critical conditions. The visualized flow fields are compared to calculated ones. A model to predict the breakup regime is established considering the phase distribution and the critical flow conditions at the exit cross section.


Articles with similar content:

FLOW VISUALIZATION OF SPRAYS FORMED BY BUBBLY, SLUG, AND ANNULAR FLOWS IN AN EFFERVESCENT ATOMIZER
Journal of Flow Visualization and Image Processing, Vol.14, 2007, issue 4
U. K. Sarkar, K. Ramamurthi
DROPLET FORMATION FROM A THIN HOLLOW LIQUID JET WITH A CORE AIR FLOW
Atomization and Sprays, Vol.15, 2005, issue 4
Sang Yong Lee, Chul Jin Choi
DROPLET FORMATION FROM A THIN HOLLOW LIQUID JET WITH A CORE AIR FLOW
Atomization and Sprays, Vol.15, 2005, issue 5
Sang Yong Lee, Chul Jin Choi
CHOKED FLOW OF A BUBBLY MIXTURE THROUGH AN EFFERVESCENT AND FLASH-BOILING ATOMIZER: A THEORETICAL APPROACH
Atomization and Sprays, Vol.17, 2007, issue 5
I. Sher, Eran Sher, Tali Bar-Kohany
Dynamic Primary Atomization Characteristics in an Airblast Atomizer, High Pressure Conditions
Atomization and Sprays, Vol.21, 2011, issue 1
Vital Gutierrez Fernandez, P. Berthoumieu, G. Lavergne