ライブラリ登録: Guest
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集
Atomization and Sprays
インパクトファクター: 1.262 5年インパクトファクター: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 1.6

ISSN 印刷: 1044-5110
ISSN オンライン: 1936-2684

巻:
巻 29, 2019 巻 28, 2018 巻 27, 2017 巻 26, 2016 巻 25, 2015 巻 24, 2014 巻 23, 2013 巻 22, 2012 巻 21, 2011 巻 20, 2010 巻 19, 2009 巻 18, 2008 巻 17, 2007 巻 16, 2006 巻 15, 2005 巻 14, 2004 巻 13, 2003 巻 12, 2002 巻 11, 2001 巻 10, 2000 巻 9, 1999 巻 8, 1998 巻 7, 1997 巻 6, 1996 巻 5, 1995 巻 4, 1994 巻 3, 1993 巻 2, 1992 巻 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.2011003894
pages 447-465

QUANTITATIVE ANALYSES OF FUEL SPRAY-AMBIENT GAS INTERACTION BY MEANS OF LIF-PIV TECHNIQUE

Jingyu Zhu
Mazda Motor Corporation, 3-1 Shinchi, Fuchu-cho, Aki-gun, Hiroshima 730-8670, Japan
Keiya Nishida
Department of Mechanical System Engineering, University of Hiroshima, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
Olawole Abiola Kuti
Department of Mechanical System Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi Hiroshima 739-8527, Japan
Seoksu Moon
Department of Mechanical Engineering, Inha University

要約

The in-cylinder fuel-ambient gas mixing property in a direct injection (D.I.) diesel engine significantly influences the ensuing combustion and exhaust emission performance. In this study, the interaction of nonevaporating diesel spray with the surrounding gas was analyzed quantitatively in the quiescent condition at room temperature and with ambient gas pressure of 1 MPa by means of the laser induced fluorescence-particle image velocimetry (LIF-PIV) technique. Particularly, this study focused on the calculation of gas mass flow rate entrained through the entire spray region (spray side periphery and tip region) and total entrained gas-fuel ratio by using the gas velocity data obtained by the LIF-PIV technique. Another focus of this study was the gas entrainment characteristics of diesel spray under a wide range of injection pressures (100, 200, and 300 MPa) and the micro-hole nozzle (0.08mm) condition. The results indicate that the entrained gas mass flow rate at the spray tip region is prominent in the whole periphery and the proportion of gas entrainment at the side surface region increases as the spray develops Higher injection pressure significantly enhances the total entrained gas mass; however the increase of ambient gas/fuel mass ratio becomes moderate gradually as the injection pressure increases. The calculation model proposed by this work is capable of illustrating the ambient gas flow characteristics of the diesel spray accurately.


Articles with similar content:

FUEL DELIVERY IN A PORT FUEL INJECTED SPARK IGNITION ENGINE
Atomization and Sprays, Vol.7, 1997, issue 6
L. M. Nemecek, James A. Drallmeier, R. M. Wagner
EXPERIMENTAL AND NUMERICAL STUDIES ON SPRAY CHARACTERISTICS OF AN INTERNAL OSCILLATING NOZZLE
Atomization and Sprays, Vol.29, 2019, issue 1
Wenbo Zhao, Wei Xie, Zhijun Wu, Liguang Li, Zongjie Hu, Jiachen Zhai, Yufeng Wang
SHEAR COAXIAL INJECTOR LOX DROPLET MEASUREMENTS AS A FUNCTION OF HYDROGEN INJECTION TEMPERATURE
Atomization and Sprays, Vol.18, 2008, issue 1
David Gandilhon
EXPERIMENTAL STUDY ON FLOW FIELDS OF FUEL DROPLETS AND AMBIENT GAS OF DIESEL SPRAY-FREE SPRAY AND FLAT-WALL IMPINGING SPRAY
Atomization and Sprays, Vol.24, 2014, issue 7
Takumi Uemura, Keiya Nishida, Jingyu Zhu
EXPERIMENTAL CHARACTERIZATION OF SHEAR COAXIAL INJECTORS USING LIQUID/GASEOUS NITROGEN
ICLASS 94
Proceedings of the Sixth International Conference on Liquid Atomization and Spray Systems, Vol.0, 1994, issue
M. J. Glogowski, M. M. Micci, C. Puissant