ライブラリ登録: Guest
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集
Atomization and Sprays
インパクトファクター: 1.262 5年インパクトファクター: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 1.6

ISSN 印刷: 1044-5110
ISSN オンライン: 1936-2684

巻:
巻 29, 2019 巻 28, 2018 巻 27, 2017 巻 26, 2016 巻 25, 2015 巻 24, 2014 巻 23, 2013 巻 22, 2012 巻 21, 2011 巻 20, 2010 巻 19, 2009 巻 18, 2008 巻 17, 2007 巻 16, 2006 巻 15, 2005 巻 14, 2004 巻 13, 2003 巻 12, 2002 巻 11, 2001 巻 10, 2000 巻 9, 1999 巻 8, 1998 巻 7, 1997 巻 6, 1996 巻 5, 1995 巻 4, 1994 巻 3, 1993 巻 2, 1992 巻 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.v19.i12.30
pages 1125-1136

ATOMIZATION AND DISPERSION MEASUREMENTS IN FIRE SPRINKLER SPRAYS

Ning Ren
University of Maryland-College Park
A. Blum
Department of Fire Protection Engineering, University of Maryland, College Park, College Park, MD 20742
C. Do
Department of Fire Protection Engineering, University of Maryland, College Park, College Park, MD 20742
Andre W. Marshall
Department of Fire Protection Engineering, 3106 J.M. Patterson Building, University of Maryland, College Park, Maryland 20742-3031, USA

要約

Water sprays are commonly used in fire suppression applications for cooling the fire environment. This cooling is achieved through the evaporation of droplets (dispersed in the fire gases) and through the wetting of surfaces (from hot or burning materials), inhibiting both the growth and spread of the fire. The suppression performance of these sprays is determined by their ability to penetrate the fire (i.e., the induced flow) to reach burning surfaces below, while dispersing water throughout the hot environment. Spray penetration and dispersion are governed by the initial drop size and velocity characteristics of the spray, which depend on the injection conditions and nozzle configuration. In many fire suppression devices, such as sprinklers, a jet is injected onto a deflector to generate the water spray. Although there are many variations on this basic concept, most sprinklers include a central boss surrounded by a deflector having both tines and spaces. To study the essential physics of the atomization process, discharge characteristics from simplified nozzles were measured. These measurements were compared with those from a more realistic sprinkler configuration. Flow visualization experiments revealed that the canonical impinging jet configuration produces a radially expanding sheet. While similar atomization mechanisms were observed, the realistic sprinkler configuration produces a three-dimensional sheet with two distinct flow streams generated by the tines and spaces of the nozzle. Comprehensive experiments were conducted to describe atomization (e.g., sheet breakup locations and initial drop sizes) and dispersion (e.g., volume density and local drop size profiles) in these sprays.


Articles with similar content:

EXPERIMENTAL INVESTIGATION ON NEAR-FIELD BREAKUP CHARACTERISTICS OF HYBRID-MIXED TWIN-FLUID ATOMIZER
Atomization and Sprays, Vol.28, 2018, issue 10
T. Y. Li, Shiyan Li, X. Y. Yang, Yi Gao, C. Fu
SPRAY CHARACTERISTICS OF AN AIR-DRIVEN ROTARY ATOMIZER WITH A DOUBLE-LAYER CUP FOR USE IN AN INDUSTRIAL OIL BURNER
Atomization and Sprays, Vol.20, 2010, issue 7
Daejin Cho, Suckju Yoon, Youngha Choi, Jaiho Lee
SPRAY CHARACTERISTICS OF A PRESSURE-SWIRL FUEL INJECTOR SUBJECTED TO A CROSSFLOW AND A COFLOW
Atomization and Sprays, Vol.21, 2011, issue 8
Barry Kiel, Ryan G. Batchelor, Amy Lynch, Mark Reeder, James Gord, Joseph Miller
DEVELOPMENT OF MICRO-DIESEL INJECTOR NOZZLES VIA MEMS TECHNOLOGY AND EFFECTS ON SPRAY CHARACTERISTICS
Atomization and Sprays, Vol.13, 2003, issue 5&6
Michael L. Corradini, James P. Blanchard, Seunghyun Baik
TWIN-FLUID ATOMIZATION: FACTORS INFLUENCING MEAN DROP SIZE
Atomization and Sprays, Vol.2, 1992, issue 2
Arthur H. Lefebvre