ライブラリ登録: Guest
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集
Atomization and Sprays
インパクトファクター: 1.262 5年インパクトファクター: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 1.6

ISSN 印刷: 1044-5110
ISSN オンライン: 1936-2684

巻:
巻 29, 2019 巻 28, 2018 巻 27, 2017 巻 26, 2016 巻 25, 2015 巻 24, 2014 巻 23, 2013 巻 22, 2012 巻 21, 2011 巻 20, 2010 巻 19, 2009 巻 18, 2008 巻 17, 2007 巻 16, 2006 巻 15, 2005 巻 14, 2004 巻 13, 2003 巻 12, 2002 巻 11, 2001 巻 10, 2000 巻 9, 1999 巻 8, 1998 巻 7, 1997 巻 6, 1996 巻 5, 1995 巻 4, 1994 巻 3, 1993 巻 2, 1992 巻 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.2016015409
pages 61-79

ASSESSMENT OF DROPLET BREAKUP MODELS IN HIGH-SPEED CROSS-FLOW

Anand Bhandarkar
Defence Research and Development Laboratory, Kanchanbagh, Hyderabad-500058, India
P. Manna
Defence Research and Development Laboratory, Kanchanbagh, Hyderabad-500058, India
Debasis Chakraborty
Defence Research and Development Laboratory, Kanchanbagh, Hyderabad-500058, India

要約

The breakup process in quiescent atmosphere and high-speed cross-flow is numerically simulated. Three-dimensional RANS equations with the K-ε turbulence model are solved using commercial CFD software. Different droplet breakup models, namely, TAB, ETAB, Ritz-Diwakar, and KH-RT models are studied to assess their predictive capability in characterizing spray in high-speed cross-flow. The validation test cases include liquid injection into quiescent atmosphere, and subsonic and supersonic cross-flow. Computed droplet velocity, droplet size, and spray penetration are compared with the experimental/numerical data available in the literature. For diesel injection in quiescent atmosphere, computed spray penetration matches reasonably well with the experimental data. For subsonic cross-flow, although the penetration height is underpredicted, SMD distribution and particle velocity match reasonably well with the experimental data. The ETAB model captures the SMD values at different locations and velocities better with experimental data in comparison to the TAB model. For the supersonic cross-flow case, penetration height and SMD have a good match with the experimental data. The Stokes drag model performs better than the high-Mach and dynamic drag models. Droplet drag law for supersonic flow needs to be revised to have better predictive capability of spray characteristics in high-speed flow.


Articles with similar content:

LINKING NOZZLE FLOW WITH SPRAY CHARACTERISTICS IN A DIESEL FUEL INJECTION SYSTEM
Atomization and Sprays, Vol.8, 1998, issue 3
Manolis Gavaises, C. Arcoumanis
Spray Trajectories of Liquid Fuel Jets in Subsonic Crossflows
International Journal of Fluid Mechanics Research, Vol.24, 1997, issue 1-3
R. P. Fuller, P.-K. Wu, K. A. Kirkendall, A. S. Nejad, M. R. Gruber
NUMERICAL ANALYSIS OF THE INFLUENCE OF THE JET BREAKUP MODEL FORMULATION ON DIESEL ENGINE COMBUSTION COMPUTATIONS
Atomization and Sprays, Vol.8, 1998, issue 2
M. C. Cameretti, C. Bertoli, P. Belardini
COMPARATIVE STUDY OF TWIN-FLUID ATOMIZATION USING SONIC OR SUPERSONIC GAS JETS
Atomization and Sprays, Vol.6, 1996, issue 3
Joon Sik Lee, Byung Kyu Park, Kenneth D. Kihm
SPRAY CHARACTERISTICS IN A DIRECT-INJECTION DIESEL ENGINE
Atomization and Sprays, Vol.6, 1996, issue 1
Hei Cheon Yang, Hong Sun Ryou, Young Ki Choi, Y. T. Jeong