ライブラリ登録: Guest
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集
Atomization and Sprays
インパクトファクター: 1.737 5年インパクトファクター: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 2.2

ISSN 印刷: 1044-5110
ISSN オンライン: 1936-2684

巻:
巻 30, 2020 巻 29, 2019 巻 28, 2018 巻 27, 2017 巻 26, 2016 巻 25, 2015 巻 24, 2014 巻 23, 2013 巻 22, 2012 巻 21, 2011 巻 20, 2010 巻 19, 2009 巻 18, 2008 巻 17, 2007 巻 16, 2006 巻 15, 2005 巻 14, 2004 巻 13, 2003 巻 12, 2002 巻 11, 2001 巻 10, 2000 巻 9, 1999 巻 8, 1998 巻 7, 1997 巻 6, 1996 巻 5, 1995 巻 4, 1994 巻 3, 1993 巻 2, 1992 巻 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.2015013285
pages 713-737

A COMPARISON OF DIESEL SPRAYS CFD MODELING APPROACHES: DDM VERSUS Σ-Y EULERIAN ATOMIZATION MODEL

Jose M. Desantes
CMT-Motores Termicos, Universitat Politecnica de Valencia, 46022, Spain
Jose M. Garcia-Oliver
CMT Motores Termicos−Universitat Politecnica de Valencia, Camino Vera s/n−46022 Valencia, Spain
Jose M. Pastor
CMT-Motores Termicos - Universitat Politecnica de Valencia
Adrian Pandal
Universidad de Oviedo

要約

A comparison between the Σ-Y atomization model and a classical DDM approach has been carried out for diesel spray computational fluid dynamics (CFD) simulations. The Σ-Y model, originally proposed by Vallet and Borghi, is based on a Eulerian representation of the spray atomization and dispersion by means of a single-fluid variable density turbulent flow. The locally homogeneous flow approach has been applied to develop a spray vaporization model based on state relationships. A finite-volume solver for model equations has been created using the OpenFOAM CFD open-source C++ library. In the case of the Lagrangian-discrete droplet method (DDM) approach, the original dieselFoam solver of OpenFOAM is used. Model predictions have been compared to experimental measurements of free diesel sprays under vaporizing conditions from the database of the Engine Combustion Network (ECN). Accurate predictions of liquid and vapor spray penetration, as well as mixture fraction, can be achieved for the nominal condition with both models, although DDM simulations tend to be less accurate. Additionally, the near nozzle flow structure of the Spray A condition of ECN is also studied with both models. The conclusion is a more accurate prediction of the near-field internal structure of the spray in the case of the Eulerian model, due to both a higher mesh resolution and a more adequate modeling approach. Consequently, results shown in this work put in evidence the benefits of using a Eulerian model to predict qualitatively and accurately the diesel spray behavior under different ambient conditions and injection pressures.


Articles with similar content:

DIESEL SPRAY CFD SIMULATIONS BASED ON THE Σ-Υ EULERIAN ATOMIZATION MODEL
Atomization and Sprays, Vol.23, 2013, issue 1
E. Baldwin, N. Trask, David P. Schmidt, Jose M. Pastor, Adrian Pandal, Jose M. Garcia-Oliver
TWO-FLUID MODELING OF SPRAY PENETRATION AND DISPERSION UNDER DIESEL ENGINE CONDITIONS
Atomization and Sprays, Vol.15, 2005, issue 3
Venkatraman Iyer, John Abraham
EVAPORATIVE DIESEL SPRAY MODELING
Atomization and Sprays, Vol.17, 2007, issue 3
Jose M. Desantes, Jose M. Garcia, J. Javier Lopez, Jose M. Pastor
MODELING SUBGRID-SCALE MIXING OF VAPOR IN DIESEL SPRAYS USING JET THEORY
Atomization and Sprays, Vol.20, 2010, issue 1
Rolf D. Reitz, Neerav Abani
COMPREHENSIVE COLLISION MODEL FOR MULTIDIMENSIONAL ENGINE SPRAY COMPUTATIONS
Atomization and Sprays, Vol.19, 2009, issue 7
Rolf D. Reitz, Achuth Munnannur