ライブラリ登録: Guest
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集
Atomization and Sprays
インパクトファクター: 1.262 5年インパクトファクター: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 1.6

ISSN 印刷: 1044-5110
ISSN オンライン: 1936-2684

巻:
巻 29, 2019 巻 28, 2018 巻 27, 2017 巻 26, 2016 巻 25, 2015 巻 24, 2014 巻 23, 2013 巻 22, 2012 巻 21, 2011 巻 20, 2010 巻 19, 2009 巻 18, 2008 巻 17, 2007 巻 16, 2006 巻 15, 2005 巻 14, 2004 巻 13, 2003 巻 12, 2002 巻 11, 2001 巻 10, 2000 巻 9, 1999 巻 8, 1998 巻 7, 1997 巻 6, 1996 巻 5, 1995 巻 4, 1994 巻 3, 1993 巻 2, 1992 巻 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.2013007539
pages 379-399

AN EXPERIMENT STUDY ON PHENOMENON AND MECHANISM OF FLASH BOILING SPRAY FROM A MULTI-HOLE GASOLINE DIRECT INJECTOR

Shenghua Yang
State Key Laboratory of Engines, Tianjin University, 92 Weijin Road, Tianjin 300072, China
Zhiping Song
State Key Laboratory of Engines, Tianjin University, 92 Weijin Road, Tianjin 300072, China
Tianyou Wang
State Key Laboratory of Engines, Tianjin University, 92 Weijin Road, Tianjin 300072, China
Zhuo Yao
State Key Laboratory of Engines, Tianjin University, 92 Weijin Road, Tianjin 300072, China

要約

Flash boiling spray could produce superior atomization and promote the formation of fuel/air mixture for a gasoline direct injection engine. However, the spray atomization deteriorates at a high degree of superheat of fuel, and the mechanism still remains unclear. In the present work, the macroscopic characteristics of flash boiling spray from a multi-hole gasoline direct injector were obtained by a Mie scattering technique to enhance understanding of the atomization process. The spray morphology and the macroscopic parameters with variations of fuel temperature and ambient pressure were analyzed. Two spray parameters were proposed to quantify the extent of spray collapse and micro-explosion, namely (1) the ratio of collapse (the ratio of penetration to width) and (2) the spray span of the near field. The correlation was identified between fuel temperature/ambient pressure and the spray characteristics (i.e., penetration, spray cone angle, spray span of near field, and ratio of collapse). By comparing the differences in spray characteristics among single-hole, two-hole, and six-hole injectors, the effects of the low-pressure core and the overlap region were decoupled. It was revealed that flash boiling spray collapse was caused by the combined effect of the low-pressure core and the overlap region. This combined effect resulted from micro-explosion and thus enhanced with increasing degree of superheat.


Articles with similar content:

INVESTIGATION OF RAPID ATOMIZATION AND COLLAPSE OF SUPERHEATED LIQUID FUEL SPRAY UNDER SUPERHEATED CONDITIONS
Atomization and Sprays, Vol.26, 2016, issue 12
Hujie Pan, Shengqi Wu, David L. S. Hung, Tianyun Li, Min Xu
EFFECT OF ETHANOL AND AMBIENT PRESSURE ON PORT-FUEL-INJECTION SPRAYS IN AN OPTICALLY ACCESSIBLE INTAKE CHAMBER
Atomization and Sprays, Vol.21, 2011, issue 5
Evatt R. Hawkes, Srinivas Padala, Sanghoon Kook
AN EXPERIMENTAL STUDY ON MICROSCOPIC CHARACTERISTICS OF FLASH BOILING SPRAY WITH EXTENDED GLARE POINT VELOCIMETRY AND SIZING
Atomization and Sprays, Vol.26, 2016, issue 5
Shenghua Yang, Ming Jia, Zhuo Yao, Shiquan Shen, Tianyou Wang
ANALYZING THE CYCLE-TO-CYCLE VARIATIONS OF PULSING SPRAY CHARACTERISTICS BY MEANS OF THE PROPER ORTHOGONAL DECOMPOSITION
Atomization and Sprays, Vol.23, 2013, issue 7
Min Xu, Jie Zhong, David L. S. Hung, Hao Chen
EXPERIMENTAL STUDY ON FLASH ATOMIZATION OF AVIATION KEROSENE
Atomization and Sprays, Vol.22, 2012, issue 2
Zhencen Fan, Wei Fan, Lin Zhao, Chuanjun Yan, Haoyi Song