ライブラリ登録: Guest
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集
Atomization and Sprays
インパクトファクター: 1.262 5年インパクトファクター: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 1.6

ISSN 印刷: 1044-5110
ISSN オンライン: 1936-2684

巻:
巻 29, 2019 巻 28, 2018 巻 27, 2017 巻 26, 2016 巻 25, 2015 巻 24, 2014 巻 23, 2013 巻 22, 2012 巻 21, 2011 巻 20, 2010 巻 19, 2009 巻 18, 2008 巻 17, 2007 巻 16, 2006 巻 15, 2005 巻 14, 2004 巻 13, 2003 巻 12, 2002 巻 11, 2001 巻 10, 2000 巻 9, 1999 巻 8, 1998 巻 7, 1997 巻 6, 1996 巻 5, 1995 巻 4, 1994 巻 3, 1993 巻 2, 1992 巻 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.v20.i1.50
pages 57-70

EXPERIMENTAL INVESTIGATION OF THE CORRELATION BETWEEN NOZZLE FLOW AND SPRAY USING LASER DOPPLER VELOCIMETER, PHASE DOPPLER SYSTEM, HIGH-SPEED PHOTOGRAPHY, AND X-RAY RADIOGRAPHY

Benjamin Balewski
Robert Bosch GmbH
Barbara Heine
Robert Bosch GmbH, Corporate Research, Postfach 10 60 50, D-70049 Stuttgart
Cameron Tropea
Technische Universität Darmstadt, Institute of Fluid Mechanics and Aerodynamics, Center of Smart Interfaces, International Research Training Group Darmstadt-Tokyo on Mathematical Fluid Dynamics, Germany

要約

This paper presents experimental investigations of the nozzle flow and spray in a pressure atomizer. Different inlays in the nozzle were used to modify the nozzle flow. To isolate the influence of turbulence and cross-flow velocity on the primary atomization, an operating point without cavitation in the nozzle was selected. This was monitored using a high-speed camera in combination with a long-distance microscope. Inside the transparent nozzle, a two-velocity component laser Doppler velocimeter (LDV) was used to measure velocity and turbulence profiles at the nozzle exit. For the characterization of the spray, different measurement techniques have been applied: high-speed photography to determine the spray angle, a phase Doppler system (PDA) for the velocity distribution and droplet sizes in the spray, and X-ray radiography for the spray angle and to evaluate the liquid density distribution. Finally, the correlations between the flow characteristics in the nozzle and the spray characteristics are discussed using the experimental results.


Articles with similar content:

X-RAY MEASUREMENTS OF FUEL SPRAY SPECIFIC SURFACE AREA AND SAUTER MEAN DIAMETER FOR CAVITATING AND NON-CAVITATING DIESEL SPRAYS
Atomization and Sprays, Vol.29, 2019, issue 3
H.J. Seong, Daniel Duke, Alan L. Kastengren, Christopher F. Powell, Katarzyna E. Matusik, B.A. Sforzo, J. Ilavsky
CHARACTERIZATION OF A SPRAY GENERATED BY AN AIRBLAST ATOMIZERWITH PREFILMER
Atomization and Sprays, Vol.20, 2010, issue 10
Feras Z. Batarseh, Ilia V. Roisman, Cameron Tropea
Time Dividing Analysis of Intermittent Fuel Spray Flows Measured by PDA
International Journal of Fluid Mechanics Research, Vol.24, 1997, issue 4-6
Tsuneaki Ishima, W.-Q. Long, T. Obokata
ASSESSMENT OF ATOMIZATION MODELS FOR DIESEL ENGINE SIMULATIONS
Atomization and Sprays, Vol.19, 2009, issue 9
S. Som, Suresh Aggarwal
ANALYSIS METHODS FOR DIRECT NUMERICAL SIMULATIONS OF PRIMARY BREAKUP OF SHEAR-THINNING LIQUID JETS
Atomization and Sprays, Vol.27, 2017, issue 4
Moritz Ertl, Bernhard Weigand