ライブラリ登録: Guest
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集
Critical Reviews™ in Eukaryotic Gene Expression
インパクトファクター: 1.841 5年インパクトファクター: 1.927 SJR: 0.649 SNIP: 0.516 CiteScore™: 1.96

ISSN 印刷: 1045-4403
ISSN オンライン: 2162-6502

Critical Reviews™ in Eukaryotic Gene Expression

DOI: 10.1615/CritRevEukarGeneExpr.v19.i3.50
pages 235-251

Molecular Parameters of Hyperthermia for Radiosensitization

Tej K. Pandita
Washington University School of Medicine
Shruti Pandita
Washington University School of Medicine, USA
Sukesh R. Bhaumik
Southern Illinois University School of Medicine, Carbondale, Illinois, USA

要約

Hyperthermia is a potent sensitizer of cell killing by ionizing radiation (IR), however, the precise mechanism of heat-induced cell death is not yet clear. Radiosensitization can be attributed to the fact that heat is a pleiotropic damaging agent, affecting multiple cell components to varying degrees by altering protein structures, thus influencing the DNA damage response. Hyperthermia alone induces several steps associated with IR signaling in cells. For example, hyperthermia enhances ATM kinase activity and increases cellular ATM autophosphorylation. This prior activation of ATM or other components of the IR-induced signaling pathway by heat interferes with the normal IR-induced signaling required for chromosomal DNA double-strand break repair, thus resulting in increased cell killing post irradiation. Hyperthermia also induces heat shock protein 70 (HSP70) synthesis and enhances telomerase activity. HSP70 expression is associated with radioresistance. Inactivation of HSP70 and telomerase increases residual DNA DSBs post IR exposure, which correlates with increased cell killing, supporting the role of HSP70 and telomerase in IR-induced DNA damage repair. Thus, hyperthermia influences several molecular parameters involved in sensitizing tumor cells to radiation and can enhance the potential of targeted radiotherapy.


Articles with similar content:

The Effects of Heat-Shock on Nuclear Matrix-Associated DNA-Replication Complexes
Critical Reviews™ in Eukaryotic Gene Expression, Vol.9, 1999, issue 3-4
Robert VanderWaal, Joseph L. Roti Roti , William D. Wright
The Role of the Androgen Receptor in Prostate Cancer
Critical Reviews™ in Eukaryotic Gene Expression, Vol.12, 2002, issue 3
Haojie Huang, Donald J. Tindall
Multifaceted Modulation of SIRT1 in Cancer and Inflammation
Critical Reviews™ in Oncogenesis, Vol.20, 2015, issue 1-2
Yun Lu, Xi Chen, Guangwei Liu, Hui Yang, Yujing Bi, Zhengguo Zhang, Yiwei Chu, Jian Wang, Ruifu Yang, Ruoning Wang, Lixiang Xue
Signaling Pathways in Pancreatic Cancer
Critical Reviews™ in Eukaryotic Gene Expression, Vol.21, 2011, issue 2
Meir Preis , Murray Korc
Androgen Action
Critical Reviews™ in Eukaryotic Gene Expression, Vol.5, 1995, issue 2
Arun K. Roy, Bandana Chatterjee