ライブラリ登録: Guest
Critical Reviews™ in Eukaryotic Gene Expression

年間 6 号発行

ISSN 印刷: 1045-4403

ISSN オンライン: 2162-6502

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.6 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 2.2 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.3 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00058 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.33 SJR: 0.345 SNIP: 0.46 CiteScore™:: 2.5 H-Index: 67

Indexed in

Gene Expression during Vascular Pericyte Differentiation

巻 9, 発行 1, 1999, pp. 1-17
DOI: 10.1615/CritRevEukaryotGeneExpr.v9.i1.10
Get accessGet access

要約

Pericytes, an integral part of the microvasculature, are involved in a number of different processes, including angiogenesis. Many of the early studies on these cells are descriptive and concentrate on the location of pericytes in vivo, surrounding the endothelial cells in the microvessels. These studies led to the proposals that pericytes have a function in maintaining blood flow and contribute to the mechanical strength of the microvessels. However, with the advancement of tissue culture techniques and molecular technology it has been shown that these cells also have the ability to differentiate into a variety of different cell types, including osteoblasts, chondrocytes, adipocytes, fibroblasts, and smooth muscle cells. This review concentrates on the differentiation of pericytes along the osteogenic pathway. Pericytes behave like osteoblasts in vitro, by forming a mineralized matrix and expressing a number of genes that are also expressed by osteoblasts. These cells also form a well-defined matrix of bone, cartilage, and fibrous tissue in vivo, although it is not clear under what circumstances pericytes express osteogenic potential in situ. This review highlights the potential functional importance of pericytes in the growth, maintenance, and repair of the skeleton and in diseases involving ectopic ossification and calcification.

によって引用された
  1. Baker Courtney E., Moore-Lotridge Stephanie N., Hysong Alexander A., Posey Samuel L., Robinette J. Patton, Blum Deke M., Benvenuti Michael A., Cole Heather A., Egawa Satoru, Okawa Atsushi, Saito Masanori, McCarthy Jason R., Nyman Jeffry S., Yuasa Masato, Schoenecker Jonathan G., Bone Fracture Acute Phase Response—A Unifying Theory of Fracture Repair: Clinical and Scientific Implications, Clinical Reviews in Bone and Mineral Metabolism, 16, 4, 2018. Crossref

  2. Sims David E, Diversity Within Pericytes, Clinical and Experimental Pharmacology and Physiology, 27, 10, 2000. Crossref

  3. Bhushan M., Young H.S., Brenchley P.E.C., Griffiths C.E.M., Recent advances in cutaneous angiogenesis, British Journal of Dermatology, 147, 3, 2002. Crossref

  4. Kondo Tetsu, Hosoya Ken-ichi, Hori Satoko, Tomi Masatoshi, Ohtsuki Sumio, Takanaga Hitomi, Nakashima Emi, Iizasa Hisashi, Asashima Tomoko, Ueda Masatsugu, Obinata Masuo, Terasaki Tetsuya, Establishment of Conditionally Immortalized Rat Retinal Pericyte Cell Lines (TR-rPCT) and Their Application in a Co-culture System Using Retinal Capillary Endothelial Cell Line (TR-iBRB2), Cell Structure and Function, 28, 3, 2003. Crossref

  5. Asashima Tomoko, Iizasa Hisashi, Terasaki Tetsuya, Nakashima Emi, Rat brain pericyte cell lines expressing ?2-adrenergic receptor, angiotensin II receptor type 1A, klotho, and CXCR4 mRNAs despite having endothelial cell markers, Journal of Cellular Physiology, 197, 1, 2003. Crossref

  6. Wang Yiyun, Xu Jiajia, Chang Leslie, Meyers Carolyn A., Zhang Lei, Broderick Kristen, Lee Min, Peault Bruno, James Aaron W., Relative contributions of adipose-resident CD146+ pericytes and CD34+ adventitial progenitor cells in bone tissue engineering, npj Regenerative Medicine, 4, 1, 2019. Crossref

  7. Graves David C., Yablonka–Reuveni Zipora, Vascular Smooth Muscle Cells Spontaneously Adopt a Skeletal Muscle Phenotype: A Unique Myf5–/MyoD+ Myogenic Program, Journal of Histochemistry & Cytochemistry, 48, 9, 2000. Crossref

  8. Mravic Marco, Asatrian Greg, Soo Chia, Lugassy Claire, Barnhill Raymond L., Dry Sarah M., Peault Bruno, James Aaron W., From pericytes to perivascular tumours: correlation between pathology, stem cell biology, and tissue engineering, International Orthopaedics, 38, 9, 2014. Crossref

  9. Aubin Jane E., Triffitt James T., Mesenchymal Stem Cells and Osteoblast Differentiation, in Principles of Bone Biology, 2002. Crossref

  10. Moe S. M., Vascular calcification and renal osteodystrophy relationship in chronic kidney disease, European Journal of Clinical Investigation, 36, s2, 2006. Crossref

  11. Wolisi Godwin O., Moe Sharon M., VITAMIN D IN HEALTH AND DISEASE: The Role of Vitamin D in Vascular Calcification in Chronic Kidney Disease, Seminars in Dialysis, 18, 4, 2005. Crossref

  12. Meyers Carolyn A., Xu Jiajia, Zhang Leititia, Chang Leslie, Wang Yiyun, Asatrian Greg, Ding Catherine, Yan Noah, Zou Erin, Broderick Kristen, Lee Min, Peault Bruno, James Aaron W., Skeletogenic Capacity of Human Perivascular Stem Cells Obtained Via Magnetic-Activated Cell Sorting, Tissue Engineering Part A, 25, 23-24, 2019. Crossref

  13. Dore-Duffy Paula, Mehedi Afroza, Wang Xueqian, Bradley Michael, Trotter Richard, Gow Alexander, Immortalized CNS pericytes are quiescent smooth muscle actin-negative and pluripotent, Microvascular Research, 82, 1, 2011. Crossref

  14. Amédée-Vilamitjana J., Intérêt de la coopération ostéoendothéliale en ingénierie du tissu osseux, ITBM-RBM, 26, 3, 2005. Crossref

  15. Dore-Duffy Paula, Esen Nilufer, Serkin Zakhar, The Elusive Multipotent Microvascular Pericyte, in The Blood-Brain Barrier in Health and Disease, Volume One, 2015. Crossref

  16. Wistow Graeme, The NEIBank project for ocular genomics: Data-mining gene expression in human and rodent eye tissues, Progress in Retinal and Eye Research, 25, 1, 2006. Crossref

  17. Green Helen, Canfield Ann E., Hillarby M. Chantal, Grant Michael E., Boot-Handford Raymond P., Freemont Anthony J., Wallis Gillian A., The Ribosomal Protein QM Is Expressed Differentially During Vertebrate Endochondral Bone Development, Journal of Bone and Mineral Research, 15, 6, 2000. Crossref

  18. Villars F., Guillotin B., Amédée T., Dutoya S., Bordenave L., Bareille R., Amédée J., Effect of HUVEC on human osteoprogenitor cell differentiation needs heterotypic gap junction communication, American Journal of Physiology-Cell Physiology, 282, 4, 2002. Crossref

  19. Francesco Vasuri, Arterial calcification: Finger-pointing at resident and circulating stem cells, World Journal of Stem Cells, 6, 5, 2014. Crossref

  20. Vernochet Cecile, Peres Sidney B., Farmer Stephen R., Mechanisms of obesity and related pathologies: Transcriptional control of adipose tissue development, FEBS Journal, 276, 20, 2009. Crossref

  21. Dore-Duffy Paula, Katychev Andre, Wang Xueqian, Van Buren Eric, CNS Microvascular Pericytes Exhibit Multipotential Stem Cell Activity, Journal of Cerebral Blood Flow & Metabolism, 26, 5, 2006. Crossref

  22. Clark P.A., Mao J.J., Biocompatibility of engineered soft tissue created by stem cells, in Biointegration of Medical Implant Materials, 2010. Crossref

  23. Loaiza Brenda, Hernández-Gutierrez Salomon, Montesinos Juan Jose, Valverde Mahara, Rojas Emilio, Nuclear Transcription Factor Kappa B Downregulation Reduces Chemoresistance in Bone Marrow-derived Cells Through P-glycoprotein Modulation, Archives of Medical Research, 47, 2, 2016. Crossref

  24. Shenoy P. Sudheer, Bose Bipasha, Hepatic perivascular mesenchymal stem cells with myogenic properties, Journal of Tissue Engineering and Regenerative Medicine, 12, 3, 2018. Crossref

  25. Bronckers Antonius LJJ, Sasaguri Kenichi, Cavender Adriana C, D'Souza Rena N, Engelse Marten A, Expression of Runx2/Cbfa1/Pebp2αA During Angiogenesis in Postnatal Rodent and Fetal Human Orofacial Tissues, Journal of Bone and Mineral Research, 20, 3, 2004. Crossref

  26. Bianco Paolo, Back to the future: Moving beyond “mesenchymal stem cells”, Journal of Cellular Biochemistry, 112, 7, 2011. Crossref

  27. Kuang Shihuan, Gillespie Mark A., Rudnicki Michael A., Niche Regulation of Muscle Satellite Cell Self-Renewal and Differentiation, Cell Stem Cell, 2, 1, 2008. Crossref

  28. Etchevers H., Vasculo- and Angio-Genesis in the Head and Neck, Rivista di Neuroradiologia, 16, 5, 2003. Crossref

  29. Prasad Monica, Zhu Qinglin, Sun Yao, Wang Xiaofang, Kulkarni Ashok, Boskey Adele, Feng Jian Q., Qin Chunlin, Expression of Dentin Sialophosphoprotein in Non-mineralized Tissues, Journal of Histochemistry & Cytochemistry, 59, 11, 2011. Crossref

  30. Richter W., Stammzellen, in Arthrose, 2004. Crossref

  31. Meyers Carolyn A., Xu Jiajia, Zhang Lei, Asatrian Greg, Ding Catherine, Yan Noah, Broderick Kristen, Sacks Justin, Goyal Raghav, Zhang Xinli, Ting Kang, Péault Bruno, Soo Chia, James Aaron W., Early Immunomodulatory Effects of Implanted Human Perivascular Stromal Cells During Bone Formation, Tissue Engineering Part A, 24, 5-6, 2018. Crossref

  32. Khlusov Igor A., Khlusova Marina Yu., Extending the Concept of Hemopoietic and Stromal Niches as an Approach to Regenerative Medicine, in Bioceramics and Biocomposites, 2019. Crossref

  33. James Aaron W., Hindle Paul, Murray Iain R., West Christopher C., Tawonsawatruk Tulyapruek, Shen Jia, Asatrian Greg, Zhang Xinli, Nguyen Vi, Simpson A. Hamish, Ting Kang, Péault Bruno, Soo Chia, Pericytes for the treatment of orthopedic conditions, Pharmacology & Therapeutics, 171, 2017. Crossref

  34. Detrait E., Etchevers H.C., Vascularisation de la tête et du cou au cours du développement, Journal of Neuroradiology, 32, 3, 2005. Crossref

  35. Pall Emoke, Cenariu Mihai, Kasaj Adrian, Florea Adrian, Soancă Andrada, Roman Alexandra, Georgiu Carmen, New insights into the cellular makeup and progenitor potential of palatal connective tissues, Microscopy Research and Technique, 80, 12, 2017. Crossref

  36. Dore-Duffy Paula, Cleary Kristen, Morphology and Properties of Pericytes, in The Blood-Brain and Other Neural Barriers, 686, 2011. Crossref

  37. Dayoub S., Devlin H., Sloan P., Evidence for the formation of metaplastic bone from pericytes in calcifying fibroblastic granuloma, Journal of Oral Pathology & Medicine, 32, 4, 2003. Crossref

  38. Alliot-Licht Brigitte, Bluteau Gilles, Magne David, Lopez-Cazaux Serena, Lieubeau Blandine, Daculsi Guy, Guicheux Jerome, Dexamethasone stimulates differentiation of odontoblast-like cells in human dental pulp cultures, Cell and Tissue Research, 321, 3, 2005. Crossref

  39. Hassouna Amira, M. Abd Elgwad Marwa, Fahmy Hoda, Stromal Stem Cells: Nature, Biology and Potential Therapeutic Applications, in Stromal Cells - Structure, Function, and Therapeutic Implications, 2019. Crossref

  40. Wong Yim P, Fu1 Sai C, Cheuk Yau C, Lee Kwong M, Wong Wargaret W N, Chan Kai M, Bone morphogenetic protein 13 stimulates cell proliferation and production of collagen in human patellar tendon fibroblasts, Acta Orthopaedica, 76, 3, 2005. Crossref

  41. Itescu Silviu, Dimmeler Stefanie, Cell Therapy for Recapitulation of Vascular Network Formation and Functional Heart Muscle Recovery after Myocardial Ischemia, in Heart Development and Regeneration, 2010. Crossref

  42. Filosa Jessica A., Nelson Mark T., Gonzalez Bosc Laura V., Activity-dependent NFATc3 nuclear accumulation in pericytes from cortical parenchymal microvessels, American Journal of Physiology-Cell Physiology, 293, 6, 2007. Crossref

  43. Shimizu Fumitaka, Sano Yasuteru, Maeda Toshihiko, Abe Masa-aki, Nakayama Hiroto, Takahashi Ri-ichi, Ueda Masatsugu, Ohtsuki Sumio, Terasaki Tetsuya, Obinata Masuo, Kanda Takashi, Peripheral Nerve pericytes originating from the blood-nerve barrier expresses tight junctional molecules and transporters as barrier-forming cells, Journal of Cellular Physiology, 217, 2, 2008. Crossref

  44. Saleh Fatima A., Genever Paul G., Turning round: multipotent stromal cells, a three-dimensional revolution?, Cytotherapy, 13, 8, 2011. Crossref

  45. Gautam Jyoti, Nirwane Abhijit, Yao Yao, Laminin differentially regulates the stemness of type I and type II pericytes, Stem Cell Research & Therapy, 8, 1, 2017. Crossref

  46. Pérez-Hernández Nonanzit, Aptilon-Duque Gad, Blachman-Braun Ruben, Vargas-Alarcón Gilberto, Rodríguez-Cortés Adrián Asael, Azrad-Daniel Shely, Posadas-Sánchez Rosalinda, Rodríguez-Pérez José Manuel, Vascular Calcification, Chinese Medical Journal, 130, 9, 2017. Crossref

  47. AUBIN JANE E., HEERSCHE JOHAN N.M., Bone Cell Biology, in Pediatric Bone, 2003. Crossref

  48. Lees-Shepard John B., Goldhamer David J., Stem cells and heterotopic ossification: Lessons from animal models, Bone, 109, 2018. Crossref

  49. Derubeis Anna, Pennesi Giuseppina, Cancedda Ranieri, Mesenchymal Stem Cells: Where Can You Find Them? How Can You Use Them?, in Stem Cell and Gene-Based Therapy, 2006. Crossref

  50. Ribatti Domenico, Cruz Amauri, Nico Beatrice, Favier Judith, Vacca Angelo, Corsi Patrizia, Roncali Luisa, Dammacco Franco, IN SITU HYBRIDIZATION AND IMMUNOGOLD LOCALIZATION OF VASCULAR ENDOTHELIAL GROWTH FACTOR RECEPTOR-2 ON THE PERICYTES OF THE CHICK CHORIOALLANTOIC MEMBRANE, Cytokine, 17, 5, 2002. Crossref

  51. Hyldahl Robert D., Schwartz Lawrence M., Clarkson Priscilla M., NF-KB activity functions in primary pericytes in a cell- and non-cell-autonomous manner to affect myotube formation, Muscle & Nerve, 47, 4, 2013. Crossref

  52. Itescu Silviu, See Fiona, Martens Timothy, Mesenchymal Progenitor Cells for Vascular Network Formation and Cardiac Muscle Regeneration, in Stem Cells And Myocardial Regeneration, 2007. Crossref

  53. Whitfield James F., Morley Paul, Willick Gordon E., , 65, 2002. Crossref

  54. Tarkka Tatu, Sipola Annina, Jämsä Timo, Soini Ylermi, Ylä-Herttuala Seppo, Tuukkanen Juha, Hautala Timo, Adenoviral VEGF-A gene transfer induces angiogenesis and promotes bone formation in healing osseous tissues, The Journal of Gene Medicine, 5, 7, 2003. Crossref

  55. Nwadozi Emmanuel, Rudnicki Martina, Haas Tara L., Metabolic Coordination of Pericyte Phenotypes: Therapeutic Implications, Frontiers in Cell and Developmental Biology, 8, 2020. Crossref

  56. Canfield Ann E., Doherty Mary Jo, Kelly Victoria, Newman Bill, Farrington Claire, Grant Michael E., Boot-Handford Raymond P., Matrix Gla protein is differentially expressed during the deposition of a calcified matrix by vascular pericytes, FEBS Letters, 487, 2, 2000. Crossref

  57. Moe Sharon M., Current Issues in the Management of Secondary Hyperparathyroidism and Bone Disease, Peritoneal Dialysis International: Journal of the International Society for Peritoneal Dialysis, 21, 3_suppl, 2001. Crossref

  58. Davies Matthew R., Hruska Keith A., Pathophysiological mechanisms of vascular calcification in end-stage renal disease, Kidney International, 60, 2, 2001. Crossref

  59. Nico Beatrice, Ennas Maria Grazia, Crivellato Enrico, Frontino Annalisa, Mangieri Domenica, De Giorgis Michela, Roncali Luisa, Ribatti Domenico, Desmin-positive pericytes in the chick embryo chorioallantoic membrane in response to fibroblast growth factor-2, Microvascular Research, 68, 1, 2004. Crossref

  60. Bellon Georges, Martiny Laurent, Robinet Arnaud, Matrix metalloproteinases and matrikines in angiogenesis, Critical Reviews in Oncology/Hematology, 49, 3, 2004. Crossref

  61. Cossu Giulio, Bianco Paolo, Mesoangioblasts — vascular progenitors for extravascular mesodermal tissues, Current Opinion in Genetics & Development, 13, 5, 2003. Crossref

  62. Short Brenton, Brouard Nathalie, Occhiodoro-Scott Teresa, Ramakrishnan Anand, Simmons Paul J, Mesenchymal stem cells, Archives of Medical Research, 34, 6, 2003. Crossref

  63. Zvaifler Nathan J, Marinova-Mutafchieva Lilla, Adams Gill, Edwards Christopher J, Moss Jill, Burger Jan A, Maini Ravinder N, Mesenchymal precursor cells in the blood of normal individuals, Arthritis Research & Therapy, 2, 6, 2000. Crossref

  64. Darland Diane C., D'Amore Patricia A., , 52, 2001. Crossref

  65. Derubeis Anna R., Mastrogiacomo Maddalena, Cancedda Ranieri, Quarto Rodolfo, Osteogenic potential of rat spleen stromal cells, European Journal of Cell Biology, 82, 4, 2003. Crossref

  66. Etchevers Heather C., Pericyte Ontogeny: The Use of Chimeras to Track a Cell Lineage of Diverse Germ Line Origins, in Pericytes, 2235, 2021. Crossref

  67. Cancedda Ranieri, Bianchi Giordano, Derubeis Anna, Quarto Rodolfo, Cell Therapy for Bone Disease: A Review of Current Status, STEM CELLS, 21, 5, 2003. Crossref

  68. Meyers Carolyn A., Wang Chenchao, Xu Jiajia, Pan Hsin Chuan, Shen Jia, Ting Kang, Soo Chia, Péault Bruno M., James Aaron W., Assessing the Bone-Forming Potential of Pericytes, in Pericytes, 2235, 2021. Crossref

  69. Yin Ying, Tang Qingming, Xie Mengru, Hu Li, Chen Lili, Insights into the mechanism of vascular endothelial cells on bone biology, Bioscience Reports, 41, 1, 2021. Crossref

  70. Girolamo Francesco, de Trizio Ignazio, Errede Mariella, Longo Giovanna, d’Amati Antonio, Virgintino Daniela, Neural crest cell-derived pericytes act as pro-angiogenic cells in human neocortex development and gliomas, Fluids and Barriers of the CNS, 18, 1, 2021. Crossref

  71. Bianco Paolo, Riminucci Mara, Gronthos Stan, Robey Pamela Gehron, Bone Marrow Stromal Stem Cells: Nature, Biology, and Potential Applications, STEM CELLS, 19, 3, 2001. Crossref

  72. Brachvogel Bent, Moch Helga, Pausch Friederike, Schlötzer-Schrehardt Ursula, Hofmann Clementine, Hallmann Rupert, von der Mark Klaus, Winkler Thomas, Pöschl Ernst, Perivascular cells expressing annexin A5 define a novel mesenchymal stem cell-like population with the capacity to differentiate into multiple mesenchymal lineages, Development, 132, 11, 2005. Crossref

  73. Sarugaser Rahul, Lickorish David, Baksh Dolores, Hosseini M. Morris, Davies John E., Human Umbilical Cord Perivascular (HUCPV) Cells: A Source of Mesenchymal Progenitors, Stem Cells, 23, 2, 2005. Crossref

  74. Tremain Nicola, Korkko Jarmo, Ibberson David, Kopen Gene C., DiGirolamo Carla, Phinney Donald G., MicroSAGE Analysis of 2,353 Expressed Genes in a Single Cell‐Derived Colony of Undifferentiated Human Mesenchymal Stem Cells Reveals mRNAs of Multiple Cell Lineages, STEM CELLS, 19, 5, 2001. Crossref

  75. Etchevers H.C., Vincent C., Le Douarin N.M., Couly G.F., The cephalic neural crest provides pericytes and smooth muscle cells to all blood vessels of the face and forebrain, Development, 128, 7, 2001. Crossref

  76. Collett G.D.M., Canfield A.E., Angiogenesis and Pericytes in the Initiation of Ectopic Calcification, Circulation Research, 96, 9, 2005. Crossref

  77. Wang Yiyun, Xu Jiajia, Meyers Carolyn A., Gao Yongxing, Tian Ye, Broderick Kristen, Peault Bruno, James Aaron W., PDGFRα marks distinct perivascular populations with different osteogenic potential within adipose tissue, Stem Cells, 38, 2, 2020. Crossref

  78. Zeng ZL, Yuan Qing, Zu Xuyu, Liu Jianghua, Insights Into the Role of Mitochondria in Vascular Calcification, Frontiers in Cardiovascular Medicine, 9, 2022. Crossref

  79. Collett Georgina, Wood Alan, Alexander M. Yvonne, Varnum Brian C., Boot-Handford Raymond P., Ohanian Vasken, Ohanian Jacqueline, Fridell Yih-Woei, Canfield Ann E., Receptor Tyrosine Kinase Axl Modulates the Osteogenic Differentiation of Pericytes, Circulation Research, 92, 10, 2003. Crossref

  80. Prockop Darwin J., Gregory Carl A., Spees Jeffery L., One strategy for cell and gene therapy: Harnessing the power of adult stem cells to repair tissues, Proceedings of the National Academy of Sciences, 100, suppl_1, 2003. Crossref

  81. Wang Shuya, Wang Xingrong, Wang Ying, Bi Hongsheng, Case Report: Multimodal Imaging in a Rare Case of Morning Glory Disc Anomaly Complicated With Choroidal Ossification, Frontiers in Medicine, 9, 2022. Crossref

  82. Lv Feng-Juan, Tuan Rocky S., Cheung Kenneth M.C., Leung Victor Y.L., Concise Review: The Surface Markers and Identity of Human Mesenchymal Stem Cells, Stem Cells, 32, 6, 2014. Crossref

  83. Johnson Rebecca C., Leopold Jane A., Loscalzo Joseph, Vascular Calcification, Circulation Research, 99, 10, 2006. Crossref

  84. Farrington-Rock C., Crofts N.J., Doherty M.J., Ashton B.A., Griffin-Jones C., Canfield A.E., Chondrogenic and Adipogenic Potential of Microvascular Pericytes, Circulation, 110, 15, 2004. Crossref

  85. Meyers Carolyn, Hindle Paul, Hardy Winters R., Xu Jia Jia, Yan Noah, Broderick Kristen, Asatrian Greg, Ting Kang, Soo Chia, Peault Bruno, James Aaron W., Perivascular Progenitor Cells for Bone Regeneration, in Regenerative Medicine and Plastic Surgery, 2019. Crossref

  86. Asashima Tomoko, Iizasa Hisashi, Terasaki Tetsuya, Hosoya Ken-ichi, Tetsuka Kazuhiro, Ueda Masatsugu, Obinata Masuo, Nakashima Emi, Newly developed rat brain pericyte cell line, TR-PCT1, responds to transforming growth factor-β1 and β-glycerophosphate, European Journal of Cell Biology, 81, 3, 2002. Crossref

  87. Covas Dimas T., Panepucci Rodrigo A., Fontes Aparecida M., Silva Wilson A., Orellana Maristela D., Freitas Marcela C.C., Neder Luciano, Santos Anemari R.D., Peres Luiz C., Jamur Maria C., Zago Marco A., Multipotent mesenchymal stromal cells obtained from diverse human tissues share functional properties and gene-expression profile with CD146+ perivascular cells and fibroblasts, Experimental Hematology, 36, 5, 2008. Crossref

  88. Ustriyana Putu, Hennefarth Matthew R., Srirangapatanam Sudarshan, Jung Haeyoon, Wang Yongmei, Chen Ling, Lue Tom F., Lin Guiting, Kang Misun, Stoller Marshall L., Ho Sunita P., Mineralized Peyronie's plaque has a phenotypic resemblance to bone, Acta Biomaterialia, 140, 2022. Crossref

  89. Chan Edward D., Morales Donald V., Welsh Carolyn H., McDermott Michael T., Schwarz Marvin I., Calcium Deposition with or without Bone Formation in the Lung, American Journal of Respiratory and Critical Care Medicine, 165, 12, 2002. Crossref

  90. Negri Stefano, Li Zhao, Wang Yiyun, Cherief Masnsen, Qin Qizhi, Xu Jiajia, Salazar Mario Armando Gomez, Hsu Ginny Ching-Yun, James Aaron W., The Role of Pericytes in the Articular Environment—a Review, Current Tissue Microenvironment Reports, 2022. Crossref

Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集 価格及び購読のポリシー Begell House 連絡先 Language English 中文 Русский Português German French Spain