ライブラリ登録: Guest
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集
Critical Reviews™ in Eukaryotic Gene Expression
インパクトファクター: 1.841 5年インパクトファクター: 1.927 SJR: 0.649 SNIP: 0.516 CiteScore™: 1.96

ISSN 印刷: 1045-4403
ISSN オンライン: 2162-6502

Critical Reviews™ in Eukaryotic Gene Expression

DOI: 10.1615/CritRevEukaryotGeneExpr.v14.i4.20
16 pages

Regulatory Mechanisms Operative in Osteoclasts

Sakamuri V. Reddy
Children's Research Institute, Department of Pediatrics, Medical University of South Carolina (MUSC), Charleston, SC 29425 Department of Medicine, Division of Hematology, University of Texas Health Science Center

要約

The osteoclast is hematopoietic in origin and is the primary bone-resorbing cell derived from monocyte/macrophage lineage. Tumor necrosis factor (TNF) family member, RANK ligand (RANKL) expressed on marrow stromal/osteoblast cells in response to several osteotropic factors, is critical for osteoclast precursor differentiation to form multinucleated osteoclasts, which resorb bone. M-CSF is required for proliferation, survival, and expression of receptor activator of nuclear factor kappa B (RANK) in osteoclast precursors. The interaction of RANKL-RANK results in activation of various signaling cascades during osteoclast development and activation. The osteoclast is an autocrine/paracrine, intracrine regulatory cell that produces factors such as IL-6, Annexin II, TGF-β, OIP-1/hSca, which influence its own formation and activity. In addition, integrin expression in osteoclasts mediate cell-matrix and cell-cell interactions in the bone microenvironment through specific signaling pathways resulting in cytoskeletal organization, polarization, and activation of osteoclasts to resorb bone. Recent molecular genetic studies have identified several transcription factors, such as NF-κB, c-Fos, MITF, and NFATc1, which are essential for osteoclast differentiation. Although a wide variety of molecules, including the reactive oxygen species (ROS) that are differentially regulated during osteoclastogenesis, the precise signal transduction pathways, and molecular mechanisms underlying the gene expression in osteoclasts, are just beginning to be defined. In this review, we discuss the molecular regulatory mechanisms operative during osteoclast differentiation, bone resorption, and survival.


Articles with similar content:

Regulatory Controls for Osteoblast Growth and Differentiation: Role of Runx/Cbfa/AML Factors
Critical Reviews™ in Eukaryotic Gene Expression, Vol.14, 2004, issue 1&2
Sayyed Kaleem Zaidi, Janet L. Stein, Jane B. Lian, Martin Montecino, Andre J. van Wijnen, Amjad Javed, Gary S. Stein, Christopher Lengner
Control of Osteoclast Differentiation
Critical Reviews™ in Eukaryotic Gene Expression, Vol.8, 1998, issue 1
G. David Roodman, Sakamuri V. Reddy
Protein Tyrosine Phosphatases in Osteoclasts
Critical Reviews™ in Eukaryotic Gene Expression, Vol.17, 2007, issue 1
Shira Granot-Attas, Hilla Knobler, Ari Elson
Regulation of RUNX1 Transcriptional Function by GATA-1
Critical Reviews™ in Eukaryotic Gene Expression, Vol.17, 2007, issue 4
Kamaleldin E. Elagib, Adam N. Goldfarb
Biochemistry of Antigen Receptor Signaling in Mature and Developing B Lymphocytes
Critical Reviews™ in Immunology, Vol.17, 1997, issue 3-4
Marian L. Birkeland , John G. Monroe