ライブラリ登録: Guest
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集
Critical Reviews™ in Eukaryotic Gene Expression
インパクトファクター: 1.841 5年インパクトファクター: 1.927 SJR: 0.649 SNIP: 0.516 CiteScore™: 1.96

ISSN 印刷: 1045-4403
ISSN オンライン: 2162-6502

Critical Reviews™ in Eukaryotic Gene Expression

DOI: 10.1615/CritRevEukaryotGeneExpr.2019027174
pages 425-435

Biochemical Mediators and Mechanisms Involved in Chromatin Conformational Remodeling through the Cell Cycle

Ravi Maddaly
Department of Human Genetics, Faculty of Biomedical Sciences, Technology, and Research, Sri Ramachandra University, Porur, Chennai 600116, India
Kauser S. Begum
Department of Human Genetics, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Medical College and Research Institute, Porur, Chennai, India
Aswathy S. Lal
Department of Human Genetics, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Medical College and Research Institute, Porur, Chennai, India
Sraddha S. Bharadwaj
Department of Human Genetics, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Medical College and Research Institute, Porur, Chennai, India

要約

Chromatin undergoes structural remodeling through the cell-cycle stages. Remodeling of the chromatin structure is extremely important for events occurring during these stages. The five major levels of structural organization, from the double-strand structure to the metaphase chromosomes are possible due to specific factors and mechanisms that function in synchrony. The mitotic promoting factors, the "structural maintenance of chromosomes" proteins, and proteins associated with cytoskeletal and nucleoskeletal elements have specific roles in structural modeling and functioning of DNA. It is of interest that the DNA decondensation cycle opposes the DNA condensation cycle. However, it is not clear if the factors and mechanisms involved in the DNA decondensation cycle are exactly opposite to the DNA condensation cycle. Also interesting is that chromosome-specific chromatin is positioned in the interphase nucleus in specific "territories" or "niches," a phenomenon similar to the exactly positioned genes at specific locations on a fully condensed chromosome. We review the factors and mechanisms in remodeling chromatin, maintaining structural integrity at each organizational level, and impact of this structural remodeling on functions of the genetic material.

参考

  1. Lodish H, Berk A, Zipursky SL, Matsudaira P, Baltimore D, Darnell J. Molecular biology of the cell. 4th ed. New York: W. H. Freeman; 2000.

  2. Lichter P, Cremer T, Borden J, Manuelidis L, Ward DC. Delineation of individual human chromosomes in metaphase and interphase cells by in situ suppression hybrid-ization using recombinant DNA libraries. Hum Genet. 1988 Nov 1;80(3):224-34.

  3. Manuelidis L. Individual interphase chromosome domains revealed by in situ hybridization. Hum Genet. 1985 Dec 1;71(4):288-93.

  4. Zeng X, Li K, Yuan R, Gao H, Luo J, Liu F, Wu Y, Wu G, Yan X. Nuclear envelope-associated chromosome dynamics during meiotic prophase I. Front Cell Dev Biol. 2018 Jan 9;5:121.

  5. Cairns BR, Lorch Y, Li Y, Zhang M, Lacomis L, Erdjument-Bromage H, Tempst P, Du J, Laurent B, Kornberg RD. RSC, an essential, abundant chromatin-remodeling complex. Cell. 1996 Dec 27;87(7):1249-60.

  6. Varga-Weisz PD, Wilm M, Bonte E, Dumas K, Mann M, Becker PB. Chromatin-remodelling factor CHRAC contains the ATPases ISWI and topoisomerase II. Nature. 1997 Aug;388(6642):598-602.

  7. Ito T, Bulger M, Pazin MJ, Kobayashi R, Kadonaga JT. ACF, an ISWI-containing and ATP-utilizing chromatin assembly and remodeling factor. Cell. 1997 Jul 11;90(1):145-55.

  8. Clapier CR, Iwasa J, Cairns BR, Peterson CL. Mechanisms of action and regulation of ATP-dependent chromatin-remodelling complexes. Nat Rev Mol Cell Biol. 2017 Jul;18(7):407.

  9. Klug W, Cummings M, Spencer C, Palladino M. Concepts of genetics. Upper Saddle River, NJ: Pearson; 2019. p. 356-71.

  10. Segal E, Fondufe-Mittendorf Y, Chen L, Thastrom A, Field Y, Moore IK, Wang JP, Widom J. A genomic code for nucleosome positioning. Nature. 2006 Aug;442(7104):772-78.

  11. Satchwell SC, Drew HR, Travers AA. Sequence periodicities in chicken nucleosome core DNA. J Mol Biol. 1986 Oct 20;191(4):659-75.

  12. Blossey R, Schiessel H. The latest twists in chromatin remodeling. Biophys J. 2018 Jan 6:12.0018.

  13. Liu X, Li M, Xia X, Li X, Chen Z. Mechanism of chromatin remodelling revealed by the Snf2-nucleosome structure. Nature. 2017 Apr;544(7651):440.

  14. Sundaramoorthy R, Hughes AL, Singh V, Wiechens N, Ryan DP, El-Mkami H, Petoukhov M, Svergun DI, Treutlein B, Quack S, Fischer M. Structural reorganization of the chromatin remodeling enzyme Chd1 upon engagement with nucleosomes. Elife. 2017 Mar 23;6: e22510.

  15. Wutz G, Varnai C, Nagasaka K, Cisneros DA, Stocsits RR, Tang W, Schoenfelder S, Jessberger G, Muhar M, Hossain MJ, Walther N. Topologically associating domains and chromatin loops depend on cohesin and are regulated by CTCF, WAPL, and PDS5 proteins. EMBO J. 2017 Dec 15;36(24):3573-99.

  16. Kishimoto T, Kuriyama R, Kondo H, Kanatani H. Generality of the action of various maturation-promoting factors. Exp Cell Res. 1982 Jan 1;137(1):121-6.

  17. Drury KC, Schorderet-Slatkine S. Effects of cycloheximide on the "autocatalytic" nature of the maturation promoting factor (MPF) in oocytes of Xenopus laevis. Cell. 1975 Mar 1;4(3):269-74.

  18. Adlakha RC, Sahasrabuddhe CG, Wright DA, Rao PN. Evidence for the presence of inhibitors of mitotic factors during G1 period in mammalian cells. J Cell Biol. 1983 Dec 1;97(6):1707-13.

  19. Nair N, Shoaib M, Serensen CS. Chromatin dynamics in genome stability: roles in suppressing endogenous DNA damage and facilitating DNA repair. Int J Mol Sci. 2017 Jul 10;18(7):1486.

  20. Simsek D, Brunet E, Wong SY, Katyal S, Gao Y, McKinnon PJ, Lou J, Zhang L, Li J, Rebar EJ, Gregory PD. DNA ligase III promotes alternative nonhomologousend-joining during chromosomal translocation formation. PLoS Genet. 2011 Jun 2;7(6):e1002080.

  21. Zhang Y, Jasin M. An essential role for CtIP in chromosomal translocation formation through an alternative end-joining pathway. Nat Struct Mol Biol. 2011 Jan;18(1):80-4.

  22. Spagnol ST, Armiger TJ, Dahl KN. Mechanobiology of chromatin and the nuclear interior. Cell Mol Bioeng. 2016 Jun 1;9(2):268-76.

  23. Ravi M, Nivedita K, Pai GM. Chromatin condensation dynamics and implications of induced premature chromosome condensation. Biochimie. 2013 Feb 1;95(2):124-33.

  24. Shintomi K, Hirano T. The relative ratio of condensin I to II determines chromosome shapes. Genes Dev. 2011 Jun 29;15:e1464-1469.

  25. Jacob NK, Cooley JV, Shirai K, Chakravarti A. Survivin splice variants are not essential for mitotic progression or inhibition of apoptosis induced by doxorubicin and radiation. OncoTargets Ther. 2012;5:7e20.

  26. Crisp M, Liu Q, Roux K, Rattner JB, Shanahan C, Burke B, Stahl PD, Hodzic D. Coupling of the nucleus and cytoplasm: role of the LINC complex. J Cell Biol. 2006 Jan 2;172(1):41-53.

  27. Andres V, Gonzalez JM. Role of A-type lamins in signaling, transcription, and chromatin organization. J Cell Biol. 2009 Dec 28;187(7):945-57.

  28. Sosa BA, Rothballer A, Kutay U, Schwartz TU. LINC complexes form by binding of three KASH peptides to domain interfaces of trimeric SUN proteins. Cell. 2012 May 25;149(5):1035-47.

  29. Lee KK, Starr D, Cohen M, Liu J, Han M, Wilson KL, Gruenbaum Y. Lamin-dependent localization of UNC-84, a protein required for nuclear migration in Caenorhabditis elegans. Mol Biol Cell. 2002 Mar 1;13(3):892-901.

  30. Koszul R, Kleckner N. Dynamic chromosome movements during meiosis: a way to eliminate unwanted connections? Trends Cell Biol. 2009 Dec 31;19(12):716-24.

  31. Sheehan MJ, Pawlowski WP. Live imaging of rapid chro-mosome movements in meiotic prophase I in maize. Proc Natl Acad Sci USA. 2009 Nov 18;106:20989-94.

  32. Bass HW. Telomere dynamics unique to meiotic prophase: formation and significance of the bouquet. Cell Mol Life Sci. 2003 Nov 1;60(11):2319-24.

  33. Scherthan H. A bouquet makes ends meet. Nat Rev M-olCell Biol. 2001;2:621-7.

  34. Linder MI, Kohler M, Boersema P, Weberruss M, Wandke C, Marino J, Ashiono C, Picotti P, Antonin W, Kutay U. Mitotic disassembly of nuclear pore complexes involves CDK1-and PLK1-mediated phosphorylation ofkey interconnecting nucleoporins. Dev Cell. 2017 Oct 23;43(2):141-56.

  35. D'angelo MA, Anderson DJ, Richard E, Hetzer MW. Nuclear pores form de novo from both sides of the nuclear envelope. Science. 2006 Apr 21;312(5772):440-3.

  36. Fernandez-Alvarez A, Bez C, O'Toole ET, Morphew M, Cooper JP. Mitotic nuclear envelope breakdown and spindle nucleation are controlled by interphase contacts between centromeres and the nuclear envelope. Dev Cell. 2016 Dec 5;39(5):544-59.

  37. Nunes VS, Moretti NS. Nuclear subcompartments: an overview. Cell Biol Int. 2017 Jan;41(1):2-7.

  38. Allard S, Masson JY, Cote J. Chromatin remodeling and the maintenance of genome integrity. Biochim Biophys Acta (BBA)-Gene Struct Expres. 2004 Mar 15;1677(1-3):158-64.

  39. Tavares L, Dimitrova E, Oxley D, Webster J, Poot R, Demmers J, Bezstarosti K, Taylor S, Ura H, Koide H, Wutz A. RYBP-PRC1 complexes mediate H2A ubiquitylation at polycomb target sites independently of PRC2 and H3K27me3. Cell. 2012 Feb 17;148(4):664-78.

  40. Gao Z, Zhang J, Bonasio R, Strino F, Sawai A, Parisi F, Kluger Y, Reinberg D. PCGF homologs, CBX proteins, and RYBP define functionally distinct PRC1 family complexes. Mol Cell. 2012 Feb 10;45(3):344-56.

  41. Chen T, Dent SY. Chromatin modifiers and remodellers: regulators of cellular differentiation. Nat Rev Genet. 2014 Feb;15(2):93.

  42. Li B, Carey M, Workman JL. The role of chromatin during transcription. Cell. 2007 Feb 23;128(4):707-19.

  43. Ma Y, Buttitta L. Chromatin organization changes during the establishment and maintenance of the postmitotic state. Epigen Chromatin. 2017 Dec;10(1):53.

  44. Pajerowski JD, Dahl KN, Zhong FL, Sammak PJ, Discher DE. Physical plasticity of the nucleus in stem cell differentiation. Proc Natl Acad Sci USA. 2007 Oct 2;104(40):15619-24.

  45. Iborra FJ. Can visco-elastic phase separation, macromolecular crowding and colloidal physics explain nuclear organisation? Theor Biol Med Model. 2007 Dec;4(1):15.

  46. Marenduzzo D, Finan K, Cook PR. The depletion attraction: an underappreciated force driving cellular organization. J Cell Biol. 2006 Dec 4;175(5):681-6.

  47. Arya G, Schlick T. Role of histone tails in chromatin folding revealed by a mesoscopic oligonucleosome model. Proc Natl Acad Sci USA. 2006 Oct 31;103(44):16236-41.

  48. Woodcock CL, Ghosh RP. Chromatin higher-order structure and dynamics. Cold Spring Harb Perspect Biol. 2010 Apr 7:a000596.