ライブラリ登録: Guest
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集
Critical Reviews™ in Eukaryotic Gene Expression
インパクトファクター: 2.156 5年インパクトファクター: 2.255 SJR: 0.649 SNIP: 0.599 CiteScore™: 3

ISSN 印刷: 1045-4403
ISSN オンライン: 2162-6502

Critical Reviews™ in Eukaryotic Gene Expression

DOI: 10.1615/CritRevEukaryotGeneExpr.2019025561
pages 461-469

HSV-1 Infection: Role of Viral Proteins and Cellular Receptors

Iram Amin
Centre of Applied Molecular Biology (CAMB), University of the Punjab, Lahore-Pakistan; Division of Molecular Virology and Infectious Diseases, Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore-Pakistan
Ayesha Vajeeha
Centre of Applied Molecular Biology (CAMB), University of the Punjab, Lahore-Pakistan
Saima Younas
Centre of Applied Molecular Biology (CAMB), University of the Punjab, Lahore-Pakistan
Samia Afzal
Division of Molecular Virology and Infectious Diseases, Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Thokar Niaz Baig, Lahore, Pakistan
Muhammad Shahid
Division of Molecular Virology and Infectious Diseases, Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Thokar Niaz Baig, Lahore, Pakistan
Rabia Nawaz
Division of Molecular Virology and Infectious Diseases, Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore-Pakistan
Muhammad Umer Khan
Centre of Applied Molecular Biology (CAMB), University of the Punjab, Lahore-Pakistan
Muhammad Idrees
Division of Molecular Virology and Infectious Diseases, Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore-Pakistan; Hazara University, Khyber Pakhtunkhwa, Pakistan

要約

The interaction between herpes simplex virus type 1 (HSV-1) and its host starts with the attachment of the virus for entry and spreading into host cells involving viral glycoproteins and host receptors. Once entered, it remains persistent as a latent infection throughout the host's life as it cannot be cleared completely by the immune system. Viral regulatory proteins and host factors determine whether the virus will enter into the acute or latent mode of infection. Acute viral infection is usually asymptomatic and self-limiting whereas latent infection may remain in the trigeminal ganglion of oropharyngeal mucosa, where it can be activated at any time depending upon the stimulus. Host innate and adaptive immune elements play important roles in limiting HSV-1 infection by interfering with viral replication but are unable to remove the virus completely. In this review, we update how the major proteins involved in entry and pathogenesis of viruses and immune responses against infection.

参考

  1. Smith JS, Robinson NJ. Age-specific prevalence of infection with herpes simplex virus types 2 and 1: a global review. J Infectious Diseases. 2002;186(Suppl 1):S3-28.

  2. Zwaagstra JC, Ghiasi H, Nesburn AB, Wechsler SL. Identification of a major regulatory sequence in the latency associated transcript (LAT) promoter of herpes simplex virus type 1 (HSV-1). Virology. 1991;182(1):287-97.

  3. Perng GC, Jones C. Towards an understanding of the herpes simplex virus type 1 latency-reactivation cycle. Interdisc Perspect Infect Dis. 2010;2010:262415.

  4. Chouljenko DV, Kim I-J, Chouljenko VN, Subramanian R, Walker JD, Kousoulas KG. Functional hierarchy of herpes simplex virus 1 viral glycoproteins in cytoplasmic virion envelopment and egress. J Virol. 2012;86(8):4262-70.

  5. Preston CM. Repression of viral transcription during herpes simplex virus latency. J General Virol. 2000;81(1):1-19.

  6. Wysocka J, Herr W. The herpes simplex virus VP16-induced complex: the makings of a regulatory switch. Trends Biochem Sci. 2003;28(6):294-304.

  7. Spear PG. Herpes simplex virus: receptors and ligands for cell entry. Cell Microbiol. 2004;6(5):401-10.

  8. Herold BC, Spear PG. Neomycin inhibits glycoprotein C (gC)-dependent binding of herpes simplex virus type 1 to cells and also inhibits postbinding events in entry. Virology. 1994;203(1):166-71.

  9. Subramanian RP, Geraghty RJ. Herpes simplex virus type 1 mediates fusion through a hemifusion intermediate by sequential activity of glycoproteins D, H, L, and B. Proc Natl Acad Sci USA. 2007;104(8):2903-8.

  10. Eisenberg RJ, Atanasiu D, Cairns TM, Gallagher JR, Krummenacher C, Cohen GH. Herpes virus fusion and entry: a story with many characters. Viruses. 2012;4(5):800-32.

  11. Tiwari V, O'Donnell C, Copeland RJ, Scarlett T, Liu J, Shukla D. Soluble 3-O-sulfated heparan sulfate can trigger herpes simplex virus type 1 entry into resistant Chinese hamster ovary (CHO-K1) cells. J General Virol. 2007;88(4):1075-9.

  12. O'Donnell CD, Kovacs M, Akhtar J, Valyi-Nagy T, Shukla D. Expanding the role of 3-O sulfated heparan sulfate in herpes simplex virus type-1 entry. Virology. 2010;397(2):389-98.

  13. Cai W, Gu B, Person S. Role of glycoprotein B of herpes simplex virus type 1 in viral entry and cell fusion. J Virol. 1988;62(8):2596-604.

  14. Atanasiu D, Whitbeck JC, de Leon MP, Lou H, Hannah BP, Cohen GH, Eisenberg RJ. Bimolecular complementation defines functional regions of herpes simplex virus gB that are involved with gH/gL as a necessary step leading to cell fusion. J Virol. 2010;84(8):3825-34.

  15. Arii J, Uema M, Morimoto T, Sagara H, Akashi H, Ono E, Arase H, Kawaguchi Y. Entry of herpes simplex virus 1 and other alphaherpesviruses via the paired immunoglobulin-like type 2 receptor a. J Virol. 2009;83(9):4520-7.

  16. Suenaga T, Satoh T, Somboonthum P, Kawaguchi Y, Mori Y, Arase H. Myelin-associated glycoprotein mediates membrane fusion and entry of neurotropic herpesviruses. Proc Natl Acad Sci USA. 2010;107(2):866-71.

  17. Arii J, Goto H, Suenaga T, Oyama M, Kozuka-Hata H, Imai T, Minowa A, Akashi H, Arase H, Kawaoka Y, Kawaguchi Y. Non-muscle myosin IIA is a functional entry receptor for herpes simplex virus-1. Nature. 2010;467(7317):859-62.

  18. Whitley RJ, Roizman B. Herpes simplex viruses. In: Clinical virology. 3rd ed. American Society of Microbiology; 2009. p. 409-436.

  19. Xu X, Che Y, Li Q. HSV-1 tegument protein and the development of its genome editing technology. Virol J. 2016;13(1):108.

  20. Fraser N, Spivack J, Wroblewska Z, Block T, Deshmane S, Valyi-Nagy T, Natarajan R, Gesser RM. A review of the molecular mechanism of HSV-1 latency. Curr Eye Res. 2009;10(1991):1-13.

  21. Ward SA, Weller SK. HSV-1 DNA replication. In: Weller SK, editor. Alphaherpesviruses: molecular virology; 2011. p. 89-112.

  22. Morrison LA, Knipe DM. Immunization with replication-defective mutants of herpes simplex virus type 1: sites of immune intervention in pathogenesis of challenge virus infection. J Virol. 1994;68(2):689-96.

  23. Margolis TP, Elfman FL, Leib D, Pakpour N, Apakupakul K, Imai Y, Voytek C. Spontaneous reactivation of herpes simplex virus type 1 in latently infected murine sensory ganglia. J Virol. 2007;81(20):11069-74.

  24. Scott D, Coulter W, Lamey PJ. Oral shedding of herpes simplex virus type 1: a review. J Oral Pathol Med. 1997;26(10):441-7.

  25. Millhouso S, Wigdahl B. Molecular circuitry regulating herpes simplex virus type 1 latency in neurons. J Neurovirol. 2000;6(1):6-24.

  26. Riley LE, editor. Herpes simplex virus. Seminars in perinatology. Elsevier; 1998.

  27. Wood JN, Lillycrop K, Dent C, Ninkina NN, Beech MM, Willoughby J, Winter J, Latchman DS. Regulation of expression of the neuronal POU protein Oct-2 by nerve growth factor. J Bio Chem. 1992;267(25):17787-91.

  28. Hobbs MR, Jones BB, Otterud BE, Leppert M, Kriesel JD. Identification of a herpes simplex labialis susceptibility region on human chromosome 21. J Infect Dis. 2008;197(3):340-6.

  29. Thompson RL, Sawtell N. The herpes simplex virus type 1 latency-associated transcript gene regulates the establishment of latency. J Virol. 1997;71(7):5432-40.

  30. Wimmer P, Schreiner S, Dobner T. Human pathogens and the host cell SUMOylation system. J Virol. 2012;86(2):642-54.

  31. Chen Y, Carrington-Lawrence SD, Bai P, Weller SK. Mutations in the putative zinc-binding motif of UL52 demonstrate a complex interdependence between the UL5 and UL52 subunits of the human herpes simplex virus type 1 helicase/primase complex. J Virol. 2005;79(14): 9088-96.

  32. Cavanaugh NA, Kuchta RD. Initiation of new DNA strands by the herpes simplex virus-1 primase-helicase complex and either herpes DNA polymerase or human DNA polymerase a. J Bio Chem. 2009;284(3):1523-32.

  33. Zheng Y, Gu H. Identification of three redundant segments responsible for herpes simplex virus 1 ICP0 to fuse with ND10 nuclear bodies. J Virol. 2015;89(8): 4214-26.

  34. Hay RT. SUMO: a history of modification. Mol Cell. 2005;18(1):1-12.

  35. Kawaguchi Y, Tanaka M, Yokoymama A, Matsuda G, Kato K, Kagawa H, Hirai K, Roizman B. Herpes simplex virus 1 a regulatory protein ICP0 functionally interacts with cellular transcription factor BMAL1. Proc Natl Acad Sci USA. 2001;98(4):1877-82.

  36. Glossop NR, Hardin PE. Central and peripheral circadian oscillator mechanisms in flies and mammals. J Cell Sci. 2002;115(17):3369-77.

  37. Boutell C, Canning M, Orr A, Everett RD. Reciprocal activities between herpes simplex virus type 1 regulatory protein ICP0, a ubiquitin E3 ligase, and ubiquitin-specific protease USP7. J Virol. 2005;79(19):12342-54.

  38. Pfoh R, Lacdao IK, Georges AA, Capar A, Zheng H, Frappier L, Saridakis V. Crystal structure of USP7 ubiquitin-like domains with an ICP0 peptide reveals a novel mechanism used by viral and cellular proteins to target USP7. PLoS Pathog. 2015;11(6):e1004950.

  39. Pozhidaeva AK, Mohni KN, Dhe-Paganon S, Arrowsmith CH, Weller SK, Korzhnev DM, Bezsonova I. Structural characterization of interaction between human ubiquitin-specific protease 7 and immediate-early protein ICP0 of herpes simplex virus-1. J Bio Chem. 2015;290(38):22907-18.

  40. Finnen RL, Hay TJ, Dauber B, Smiley JR, Banfield BW. The herpes simplex virus 2 virion-associated ribonuclease VHS interferes with stress granule formation. J Virol. 2014;88(21):12727-39.


Articles with similar content:

Is the CD200/CD200 Receptor Interaction More Than Just a Myeloid Cell Inhibitory Signal?
Critical Reviews™ in Immunology, Vol.26, 2006, issue 3
Janet Liversidge, Konstantinos Minas
Role of Human Natural Killer Cells during Epstein-Barr Virus Infection
Critical Reviews™ in Immunology, Vol.34, 2014, issue 6
Christian Muenz
Elimination of Virus-Specific Cytotoxic T Cells in the Liver
Critical Reviews™ in Immunology, Vol.22, 2002, issue 1
Gunther Dennert
Regulation of Antiviral CD8 T-Cell Responses
Critical Reviews™ in Immunology, Vol.33, 2013, issue 6
Joseph M. Kulinski, Vera L. Tarakanova, James Verbsky
The Pathogenesis of Murine Coronavirus Infection of the Central Nervous System
Critical Reviews™ in Immunology, Vol.30, 2010, issue 2
Thomas E. Lane, Martin P. Hosking