ライブラリ登録: Guest
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集
International Journal of Medicinal Mushrooms
インパクトファクター: 1.423 5年インパクトファクター: 1.525 SJR: 0.431 SNIP: 0.661 CiteScore™: 1.38

ISSN 印刷: 1521-9437
ISSN オンライン: 1940-4344

International Journal of Medicinal Mushrooms

DOI: 10.1615/IntJMedMushrooms.2019030328
pages 343-352

Assessing the Bioavailability of Zinc and Indole Compounds from Mycelial Cultures of the Bay Mushroom Imleria badia (Agaricomycetes) Using In Vitro Models

Katarzyna Kała
Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
Agata Krakowska
Department of Inorganic and Analytical Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
Joanna Gdula-Argasinska
Department of Radioligands, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
Wlodzimierz Opoka
Department of Inorganic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
Bozena Muszynska
Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland

要約

Zinc and indole compounds demonstrate anti-inflammatory, antidepressant, and antioxidant activity. Edible mushrooms are good sources of these substances. Therefore, in this study, we aimed to study the accumulation, release, and absorption of zinc and indole compounds from mycelial cultures of Imleria badia species using in vitro models. Samples were analyzed using the atomic absorption spectroscopy method and the reversed-phase high-performance liquid chromatography method. The highest quantities of zinc were detected in the material grown on zinc hydrogen aspartate-enriched media (176.01 mg/100 g dry weight [d.w.]). In addition, the quantity of zinc in the control biomass was approximately 12.13 mg/100 g d.w. After passive transport, the amount of zinc was detected to be around 1.40 mg/100 g d.w., whereas after active transport with CaCo-2 cells, the quantity of zinc ranged from 0.46 mg/100 g d.w. to 12.72 mg/100 g d.w. Among the organic compounds, four indole compounds were qualitatively identified, including 5-hydroxy-l-tryptophan, melatonin, l-tryptophan, and 5-methyltryptamine. These results indicate that mushrooms and their in vitro cultures not only synthesize and accumulate these compounds, but also potentially release them into the gastrointestinal tract where they can be absorbed by the human body, which is reflected as a specific health benefit.

参考

  1. Chang ST, Wasser SP. , The role of culinary-medicinal mushrooms on human welfare with a pyramid model for human health. Int J Med Mushrooms. 2012;14(2):95−134.

  2. Kała K, Maślanka A, Sułkowska-Ziaja K, Rojowski J, Opoka W, Muszyńska B. , In vitro culture of Boletus badius as a source of indole compounds and zinc ions released in artificial digestive juices. Food Sci Biotechnol. 2016;25(3): 829−37.

  3. Ofosu FK, Yu X, Wang Q, Li H. , Nutrient optimization using response surface methodology for simultaneous biomass and bioactive compound production by lion’s mane medicinal mushroom, Hericium erinaceus (Agaricomycetes). Int J Med Mushrooms. 2016;18(3):215−26.

  4. Wu CY. , The influence of cultivation conditions on mycelial growth and exopolysaccharide production of culinary-medicinal mushroom Pleurotus citrinopileatus Singer (Agaricomycetideae). Int J Med Mushrooms. 2008;10(3):279−92.

  5. Grzwacz A, Gdula-Argasińska J, Kała K, Opoka W, Muszyńska B. , Anti-inflammatory activity of biomass extracts of the bay mushroom, Imleria badia (Agaricomycetes), in RAW 264.7 cells. Int J Med Mushrooms. 2016;18(9):769−79.

  6. Heleno SA, Ferreira RC, Antonio AL, Queiroz MRP, Barros L, Ferreira ICFR, Nutritional value, bioactive compounds and antioxidant properties of three edible mushrooms from Poland. Food Biosci. 2015;11:48−55.

  7. Li J, Li P, Liu F. , Production of theanine by Xerocomus badius (mushroom) using submerged fermentation. LWT Food Sci Technol. 2008;41(5):883−9.

  8. Radzki W, Slawinska A, Jablonska-Rys E, Gustaw W. , Antioxidant capacity and polyphenolic content of dried wild edible mushrooms from Poland. Int J Med Mushrooms. 2014;16(1):65−75.

  9. Elmastas M, Isildak O, Turkekul I, Temur N. , Determination of antioxidant activity and antioxidant compounds in wild edible mushrooms. J Food Compos Anal. 2007;20(3-4):337–45.

  10. Krzyczkowski W, Malinowska E, Suchocki P, Kleps J, Olejnik M, Herold F. , Isolation and quantitative determination of ergosterol peroxide in various edible mushroom species. Food Chem. 2009;113(1):351−5.

  11. Nowacka N, Nowak R, Drozd M, Olech M, Los R, Malm A. , Analysis of phenolic constituents, antiradical and antimicrobial activity of edible mushrooms growing wild in Poland. LWT Food Sci Technol. 2014;59(2):689−94.

  12. Gurer-Orhan H, Karaaslan C, Ozcan S, Firuzi O, Tavakkoli M, Saso L, Suzen S. , Novel indole-based melatonin analogs: evaluation of antioxidant activity and protective effect against amyloid β-induced damage. Bioorgan Med Chem. 2016;24(8):1658−64.

  13. Lee JH, Wendisch VF. , Biotechnological production of aromatic compounds of the extended shikimate pathway from renewable biomass. J Biotechnol. 2017;257:211−21.

  14. Wani AL, Parveen N, Ansari MO, Ahmad MF, Jameel S, Shadab GGHA. , Zinc: an element of extensive medical importance. CMRP. 2017;7(3):90−8.

  15. Foster M, Samman S., Vegetarian diets across the lifecycle: impact on zinc intake and status. Adv Food Nutr Res. 2015;74:93−131.

  16. Li Z, Li B, Song X, Zhang D. , Dietary zinc and iron intake and risk of depression: a meta-analysis. Psychiatr Res. 2017;251:41−7.

  17. Prasad AS. , Impact of the discovery of human zinc deficiency on health. J Trace Elem Med Bio. 2014;28(3):357−63.

  18. Chen L, Lian HT, Sun XY, Liu B. , Sensitive detection of L-5-hydroxytryptophan based on molecularly imprinted polymers with graphene amplification. Anal Biochem. 2017;526:58−65.

  19. Rodriguez-Naranjo MI, Moyá ML, Cantos-Villar E, Garcia-Parrilla MC. , Comparative evaluation of the antioxidant activity of melatonin and related indoles. J Food Compos Anal. 2012;28(1):16−22.

  20. García MA, Alonso J, Melgar MJ. , Bioconcentration of chromium in edible mushrooms: influence of environmental and genetic factors. Food Chem Toxicol. 2013;58:249−54.

  21. Muszyńska B, Kała K, Sułkowska-Ziaja K, Krakowska A, Opoka W. , Agaricus bisporus and its in vitro culture as a source of indole compounds released into artificial digestive juices. Food Chem. 2016;199:509−15.

  22. Arvidson K, Johansson EG. , Galvanic current between dental alloys in vitro. Scand J Dent Res. 1985;9(5)3:467−73.

  23. Polish Pharmacopeia. 10th ed. Warszawa (Poland): PTFarm; 2014.

  24. Neumann M, Goderska K, Grajek K, Grajek W. , The in vitro models of gastrointestinal tract to study bioavailability of nutriments. Food Sci Technol Qual. 2006;1(46):30−45.

  25. Fang Y, Cao W, Xia M, Pan S, Xu X. , Study of structure and permeability relationship of flavonoids in CaCo-2 cells. Nutrients. 2017;9(12):1301.

  26. Muszyńska B, Kała K, Sułkowska-Ziaja K, Gaweł K, Zając M, Opoka W. , Determination of indole compounds released from selected edible mushrooms and their biomass to artificial stomach juice. LWT Food Sci Technol. 2015;62(1):7−31.

  27. de Mattos-Shipley KMJ, Ford KL, Alberti F, Banks AM, Bailey AM, Foster GD. , The good, the bad and the tasty: the many roles of mushrooms. Stud Mycol. 2016;85:125−57.

  28. Kała K, Sułkowska-Ziaja K, Rojowski J, Opoka W, Muszyńska B. , Tricholoma equestre species as a source of indole compounds and zinc released into artificial digestive juices. Med Inter Rev. 2016;27(106):35−9.

  29. Kała K, Muszyńska B, Zając M, Krężałek R, Opoka W. , Determination of zinc(II) ions released into artificial digestive juices from culinary-medicinal button mushroom, Agaricus bisporus (Agaricomycetidae), biomass of in vitro cultures using an anodic stripping voltammetry method. Int J Med Mushrooms. 2016;18.