ライブラリ登録: Guest
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集
International Journal of Fluid Mechanics Research
ESCI SJR: 0.206 SNIP: 0.446 CiteScore™: 0.5

ISSN 印刷: 2152-5102
ISSN オンライン: 2152-5110

巻:
巻 46, 2019 巻 45, 2018 巻 44, 2017 巻 43, 2016 巻 42, 2015 巻 41, 2014 巻 40, 2013 巻 39, 2012 巻 38, 2011 巻 37, 2010 巻 36, 2009 巻 35, 2008 巻 34, 2007 巻 33, 2006 巻 32, 2005 巻 31, 2004 巻 30, 2003 巻 29, 2002 巻 28, 2001 巻 27, 2000 巻 26, 1999 巻 25, 1998 巻 24, 1997 巻 23, 1996 巻 22, 1995

International Journal of Fluid Mechanics Research

DOI: 10.1615/InterJFluidMechRes.v32.i2.60
pages 214-254

Simulation of Evaporation from Bare Soil without and with the Soil Surface Seal

V. L. Polyakov
Institute of Hydromechanics of National Academy of Sciences of Ukraine, Kyiv, Ukraine

要約

An expression for calculating the evaporation intensity from bare wet soil was derived from a joint consideration of heat and water flow dynamics in adjacent air and soil media. This expression refines well-known theoretical formulae to determine potential evaporation (Penman, Budagovsky etc.). An estimation was performed for the effect of transitional soil processes due to dramatic change in meteorological conditions and physical parameters characterizing soil state. Criteria were found so that if they were obeyed then there was to limitation of evaporation. In case of turf-podsolic soil the duration of the first stage, unsaturated soil water flow were computed at several depths of the water table and initial moisture distributions in the aeration zone. A preliminary estimation was made of effect of soil seal formed due to rainfall on the physical evaporation. It is established that soil compaction because of falling drops can noticeably intensify or reduce outflow from the soil surface. A theoretical analysis was done of evaporation for bare soil and the second and third stages based on a stationary model of consistent heat and water transfer in the system soil-atmosphere (subsurface layer). The effect of thermal, hydrophysical soil properties and meteorological elements on evaporation intensity and thickness of a dried layer was investigated. It was shown that hydraulic conductivity was of decisive value. A boundary condition at the soil surface is found which reflects the peculiarities of water exchange between soil and air media at the stages under consideration. The calculations were performed for five wide-spread soil types.


Articles with similar content:

Effective Thermal Conductivity of Frost
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 1986, issue
H. Auracher
STUDY ON PHYSICAL SIMULATION EXPERIMENT AND APPLICATION OF CYCLIC WATER INJECTION USING TIGHT LARGE-SCALE MODEL
Special Topics & Reviews in Porous Media: An International Journal, Vol.9, 2018, issue 1
Guozhong Liu , Xiangyang Wang, Zhengming Yang, Yonghua Sun, Xuewei Liu
Influence of the Temperature and Oxygen Content on the Intensity of Aerobic Oxidation of Organic Matter in the Water of the Black Sea
Hydrobiological Journal, Vol.39, 2003, issue 6
Ye. I. Gazetov, V. I. Medinets, N. V. Kovaleva
Analysis of a Mathematical Model of a Computer-Aided Television Monitoring System
Journal of Automation and Information Sciences, Vol.31, 1999, issue 1-3
O. V. Kulikova, V. A. Porev
Superhydrophobicity or Icephobicity for an Effective Icing Mitigation Strategy?
International Heat Transfer Conference 15, Vol.35, 2014, issue
Alidad Amirfazli, Marco Marengo, Carlo Antonini