ライブラリ登録: Guest
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集
International Journal of Fluid Mechanics Research
ESCI SJR: 0.206 SNIP: 0.446 CiteScore™: 0.5

ISSN 印刷: 2152-5102
ISSN オンライン: 2152-5110

巻:
巻 46, 2019 巻 45, 2018 巻 44, 2017 巻 43, 2016 巻 42, 2015 巻 41, 2014 巻 40, 2013 巻 39, 2012 巻 38, 2011 巻 37, 2010 巻 36, 2009 巻 35, 2008 巻 34, 2007 巻 33, 2006 巻 32, 2005 巻 31, 2004 巻 30, 2003 巻 29, 2002 巻 28, 2001 巻 27, 2000 巻 26, 1999 巻 25, 1998 巻 24, 1997 巻 23, 1996 巻 22, 1995

International Journal of Fluid Mechanics Research

DOI: 10.1615/InterJFluidMechRes.2018024591
pages 459-477

HEAT AND MASS TRANSFER ON UNSTEADY, MAGNETOHYDRODYNAMIC, OSCILLATORY FLOW OF SECOND-GRADE FLUID THROUGH A POROUS MEDIUM BETWEEN TWO VERTICAL PLATES, UNDER THE INFLUENCE OF FLUCTUATING HEAT SOURCE/SINK, AND CHEMICAL REACTION

M. Veera Krishna
Department of Mathematics, Rayalaseema University, Kurnool, Andhra Pradesh - 518007, India
Kamboji Jyothi
Department of Mathematics, Rayalaseema University, Kurnool, Andhra Pradesh-518007, India
Ali J. Chamkha
Department of Mechanical Engineering, Prince Sultan Endowment for Energy and Environment, Prince Mohammad Bin Fahd University, Al-Khobar 31952, Kingdom of Saudi Arabia; RAK Research and Innovation Center, American University of Ras Al Khaimah, United Arab Emirates, 10021

要約

We consider the unsteady, magnetohydrodynamic, oscillatory flow of an incompressible, electrically conducting, second-grade fluid through a saturated, porous medium between two vertical plates that are under the influence of a uniform, transverse, magnetic field normal to the plates, with heat source and chemical reaction. One plate of the vertical channel is kept stationary, whereas the other is oscillating with uniform velocity; the two plates are subjected to constant injection and suction velocities, respectively. The flow through the porous medium is governed by the equation for Brinkman's model for momentum. The closed-form solutions of the governing equations are obtained for velocity, temperature, and concentration profiles, with use of the perturbation technique. The effects of various governing parameters on these three profiles are computationally discussed and graphically presented. Skin friction, Nusselt number, and Sherwood number are obtained analytically, and their behaviors are computationally discussed.


Articles with similar content:

HEAT AND MASS TRANSFER ON MHD FREE CONVECTIVE FLOW OVER AN INFINITE NONCONDUCTING VERTICAL FLAT POROUS PLATE
International Journal of Fluid Mechanics Research, Vol.46, 2019, issue 1
M. Veera Krishna, M. Gangadhar Reddy, Ali J. Chamkha
Natural Convection Flow in a Rotating Fluid Over a Vertical Plate Embedded in a Thermally Stratified High-Porosity Medium
International Journal of Fluid Mechanics Research, Vol.32, 2005, issue 5
Girishwar Nath, Harmindar S. Takhar, Ali J. Chamkha
Numerical Solution to the MHD Flow of Micropolar Fluid Between Parallel Porous Plates
International Journal of Fluid Mechanics Research, Vol.35, 2008, issue 4
Mekonnen Shiferaw, D. Srinivasacharya
HYDROMAGNETIC NATURAL CONVECTION FLOW WITH RADIATIVE HEAT TRANSFER PAST AN ACCELERATED MOVING VERTICAL PLATE WITH RAMPED TEMPERATURE THROUGH A POROUS MEDIUM
Journal of Porous Media, Vol.17, 2014, issue 1
Gauri S. Seth, Syed Modassir Hussain, Subharthi Sarkar
HYDROMAGNETIC ROTATING FLOWS OF AN OLDROYD-B FLUID IN A POROUS MEDIUM
Special Topics & Reviews in Porous Media: An International Journal, Vol.3, 2012, issue 1
Ilyas Khan, Kamran Fakhar, Muhammad Imran Anwar