ライブラリ登録: Guest
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集
International Journal on Algae
SJR: 0.216 SNIP: 0.322 CiteScore™: 0.4

ISSN 印刷: 1521-9429
ISSN オンライン: 1940-4328

International Journal on Algae

DOI: 10.1615/InterJAlgae.v22.i1.60
pages 69-76

Chlorophyta Growth Rate on Different Cultivation Media

T. A. Leontieva
Institute of Hydrobiology, NAS of Ukraine, 12 Geroev Stalingrada Ave., Kiev 03254, Ukraine
N. I. Kirpenko
Institute of Hydrobiology, NAS of Ukraine, 12 Geroev Stalingrada Ave., Kiev 03254, Ukraine

要約

The growth rates (GR) of green microalgae cultures of the genera Desmodesmus (Chodat) S.S.An, T.Friedl & E.Hegewald, Scenedesmus Meyen, Acutodesmus (Hegewald) Tsarenko, and Selenastrum Reinsch were studied. Algologically pure cultures of microalgae were grown in batch culture at a temperature of 25 ± 0.5°C, illumination 2500 lx with alternating light: darkness 16 : 8 h, on various cultural media Fitzgerald (in modification of Zehnder and Gorham), Tamiya and Bold, which differ significantly in content of basic nutrient elements: nitrogen and phosphorus. Microscopic analysis of cultures during cultivation showed noticeable differences in the GR of the studied species of microalgae under these conditions. The highest GR values were recorded on Fitzgerald medium with representatives of the genus Scenedesmus leading in GR values. At the same time, species-specific differences were observed within the studied genera. For example, the GR of Scenedesmus ellipticus Corda was higher than S. obtusus Meyen, and Desmodesmus subspicatus (Chodat) E.Hegewald & A.Schmidt had higher GR compared to D. communis (E.Hegewald) E.Hegewald. On the Bold medium, as well as on the Fitzgerald medium, S. ellipticus was characterized by the highest GR, while on the Tamiya medium it had very low rates. The Tamiya medium turned was the least favorable for growth of the studied microalgae species, with the exception of D. subspicatus; its number exceeded those of other species. Depending on the nutrient medium, the dynamics of culture growth also changed, in particular, the duration of the development phases.

参考

  1. Amin-Ul Mannan M., D. Hazra, A. Karnwal, and D.Ch. Kannan., Algae as a platform for biofuel production - a sustainable perspective. Algologia. 27(3): 337-356,2017. https://doi.org/10.15407/alg27.03.337.

  2. Bilous O.P., Nezbrytska I.M., Klochenko P.D., and Kirpenko N.I., Culture collection of algae HPDP. Kyiv: Alterpress. 36 p. [Ukr.], 2018.

  3. Borowitzka A. and Vonshak A., Scaling up microalgal cultures to commercial scale. European J. Phycol. 52(4): 407-418, 2017. https://doi.org/10.1080/09670262.2017.1365177.

  4. Doria E., Longoni P., Scibilia L., Iazzi N., Cella R., and Nielsen E., Isolation and characterization of a Scenedesmus acutus strain to be used for bioremediation of urban wastwater. J. Appl. Phycol. 24: 375-383, 2012.

  5. Kirpenko N.I., Areas of use of microalgae biopolymers. Nauk. zap. Ternop. nats. ped. un-tu. Ser. Biol. 24 (3-4): 48-52, 2004.

  6. Kirpenko N.I., Usenko O.M., and Musiy T.O., Comparative analysis of the content of proteins, carbohydrates, and lipids in the cells of green microalgae. Hydrobiol. J. 53(6): 87-98, 2017. https://doi.org/10.1615/ HydrobJ.v54.i2.80.

  7. Melnikov S.S., Manankina E.E., Samovich T.V., Kozel N.V., and Shalygo N.V. , Optimization of growing conditions of chlorella. ViesciNANBielarusi. Sier. bijal. navuk. 3: 52-56, 2014.

  8. Perspectives for the use of microalgae in biotechnology., Ed. O.K. Zolotareva. Kyiv: Alterpress. 234 p. [Ukr.], 2008.

  9. Sirenko L.A., Sakevich A.I., and Osipov L.F., Methods of physiologicalbiochemical research of algae in hydrobiologicalpractice. Kiev: Naukova Dumka. 247 p. [Rus.], 1975.

  10. Sorokina K.N., Yakovlev V.A., Piligaev V.A., Kukushkin R.G., Peltek S.E., Kolchanov N.A., and Parmon V.N., The potential use of microalgae as a feedstock for bioenergy. Kataliz vpromyshlennosti. 2: 63-72, 2012.


Articles with similar content:

Studies on Synedra acus Kutz. var. radians (Kutz.) Hust. (Bacillariophyta) in culture
International Journal on Algae, Vol.4, 2002, issue 1
N. A. Bondarenko, N. Ye. Guselnikova
Biochemical Composition of Cyanobacterium Calothrix marchica and Perspectives its Using in Biotechnology
International Journal on Algae, Vol.22, 2020, issue 2
V. Bulimaga , M. B. Bulimaga , A. Trofim
Epiphytic diatoms of the Black Sea Gracilaria under conditions of its experimental cultivation
International Journal on Algae, Vol.5, 2003, issue 3
N. V. Mironova, L. I. Ryabushko, B. N. Belyaev
Productivity of two morphological forms of Laurencia papillosa (Forsk.) Grev. (Rhodophyta) in culture
International Journal on Algae, Vol.7, 2005, issue 2
V. A. Silkin, I. K. Evstigneeva
Peculiarities of Green Algae Growth and Accumulation of Pigments in Their Cells under Different Conditions of Illumination and Photoperiod Length
Hydrobiological Journal, Vol.56, 2020, issue 2
Z. N. Gorbunova, V. A. Medved'