ライブラリ登録: Guest
ICHMT DL ホーム 今年 アーカイブ 執行委員会 熱・物質移動国際センター

THINKING BEYOND THE PHONON GAS MODEL

DOI: 10.1615/ICHMT.2015.IntSympAdvComputHeatTransf.1910
page 1809

Asegun Henry
George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332

要約

Understanding the thermal conductivity of bulk crystalline solids is essentially a solved problem and it is well described by the phonon gas model (PGM). The PGM treats phonons (e.g., quanta of lattice vibration energy) as a gas of quasi-particles that carry energy at a certain speed for some averaged distance, termed the mean free path (MFP). This model does an excellent job at explaining the thermal conductivity of crystalline solids and due to advancements in modeling over the last decade, one can now calculate phonon energies, velocities and MFPs fully from first principles. This now allows one to predict the thermal conductivity of virtually any crystalline material with excellent agreement with experiments at virtually all temperatures of technological interest. By employing Monte Carlo methods or the Boltzmann Transport Equation, one can also accurately predict the thermal conductivity of micro and nanostructures due to quantum or classical size effects. As a result of the great success of this model, it has prevailed as the primary physical picture used to understand and interpret all phonon transport related phenomena. However, there are a number of technologically important material classes and molecules that are not well described by the PGM. This talk will discuss several instances where the PGM is inconsistent with the atomic level behaviors observed in molecular dynamics simulations. The talk will also cover several new theoretical modeling developments that offer a different perspective on phonon-phonon interactions. These new developments now allow for direct calculation of phonon contributions to thermal conductivity and interface conductance for any system where the atoms vibrate around stable equilibrium sites, such as disordered alloys, amorphous materials and individual molecules.

ICHMT Digital Library

Bow shocks on a jet-like solid body shape. Thermal Sciences 2004, 2004. Pulsed, supersonic fuel jets - their characteristics and potential for improved diesel engine injection. PULSED, SUPERSONIC FUEL JETS - THEIR CHARACTERISTICS AND POTENTIAL FOR IMPROVED DIESEL ENGINE INJECTION
View of engine compartment components (left). Plots of temperature distributions in centreplane, forward of engine (right). CHT-04 - Advances in Computational Heat Transfer III, 2004. Devel... DEVELOPMENT AND CURRENT STATUS OF INDUSTRIAL THERMOFLUIDS CFD ANALYSIS
Pratt & Whitney's F-135 Joint Strike Fighter Engine under test in Florida is a 3600F class jet engine. TURBINE-09, 2009. Turbine airfoil leading edge stagnation aerodynamics and heat transfe... TURBINE AIRFOIL LEADING EDGE STAGNATION AERODYNAMICS AND HEAT TRANSFER - A REVIEW
Refractive index reconstructed field. (a) Second iteration. (b) Fourth iteration. Radiative Transfer - VI, 2010. Theoretical development for refractive index reconstruction from a radiative ... THEORETICAL DEVELOPMENT FOR REFRACTIVE INDEX RECONSTRUCTION FROM A RADIATIVE TRANSFER EQUATION-BASED ALGORITHM
Two inclusion test, four collimated sources. Radiative Transfer - VI, 2010. New developments in frequency domain optical tomography. Part II. Application with a L-BFGS associated to an inexa... NEW DEVELOPMENTS IN FREQUENCY DOMAIN OPTICAL TOMOGRAPHY. PART II. APPLICATION WITH A L-BFGS ASSOCIATED TO AN INEXACT LINE SEARCH