ライブラリ登録: Guest
Heat and Mass Transfer in Severe Nuclear Reactor Accidents. Proceedings of the International Symposium
May, 22-26, 1995 , Kusadasi, Turkey

DOI: 10.1615/ICHMT.1995.RadTransfProcHeatMassTransfSevNuclReactAcc


ISBN Print: 978-1-56700-059-7

EXPERIMENTAL ANALYSIS OF AEROSOL BEHAVIORS IN PRIMARY PIPING WITH ART CODE DURING SEVERE ACCIDENT

DOI: 10.1615/ICHMT.1995.RadTransfProcHeatMassTransfSevNuclReactAcc.440
Get accessGet access

要約

The WAVE (Wide range Aerosol model VErification) experiments have been performed at JAERI to investigate the Csl deposition onto the inner surface of pipe wall under typical severe accident conditions. It was shown that relatively large amount of CsI was deposited at the upstream floor of the pipe and that larger amount of CsI was deposited on the ceiling than the floor at the downstream. Analyses of the experiments have also been conducted with the three-dimensional thermohydraulic code, SPRAC, and the radionuclide transport analysis code, ART. The experimental results were well reproduced with ART by using peripherally subdivided pipe cross section and associated representative thermohydraulic information from SPRAC prediction. It was clarified through the present experiment and analyses that major deposition mechanisms for the chemical form of CsI are thermophoresis and condensation. Accordingly, the coupling of the FP behavior and the detailed thermohydraulic analyses was found to be essential in order to accurately predict the CsI deposition in the pipe, to which little attention has been paid in the previous studies. It is recommended for more precise source term evaluation that three-dimensional thermohydraulics in the pipe be taken into account, since the large amount of CsI locally deposited may result in the increased revaporization.

Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集 価格及び購読のポリシー Begell House 連絡先 Language English 中文 Русский Português German French Spain