ライブラリ登録: Guest
ICHMT DL ホーム 今年 アーカイブ 執行委員会 熱・物質移動国際センター

RADIATION-TURBULENCE INTERACTION IN FLAMES USING ADDITIVE TURBULENT DECOMPOSITION

DOI: 10.1615/ICHMT.1995.RadTransfProc.300

James M. McDonough
Department of Mechanical Engineering, University of Kentucky, Lexington, KY 40506-0046, USA

D. Wang
Department of Mechanical Engineering, University of Kentucky, Lexington, KY 40506-0046, USA

M. Pinar Menguc
Center for Energy, Environment and Economy (CEEE), Ozyegin University, Cekmekoy, 34794, Istanbul Turkey

要約

The purpose of this paper is to discuss the nature of the unsteady interactions between buoyant turbulence and radiation feedback to the center of flames. An unfiltered additive turbulent decomposition (ATD) is carried out in a manner similar to that originally developed by McDonough and co-workers for studying Burgers' equation. The new approach is philosophically similar to LES; namely, treat the large and small scales separately. However, the technique requires no formal filtering or averaging for the large-scale equations, and the corresponding subgrid-scale models are obtained as local spectral approximations of the original governing equations. In the present work, only the small-scale part of the governing equations has been solved, and the large-scale parameters are to be obtained directly from either a global computer program or from corresponding experimental results. Preliminarily calculated results show that the radiation in the flame markedly influences the flow in the center of flame, and even periodic radiation fluctuations can lead to chaotic behavior of the flow. The extent to which the flow fluctuates not only depends on fluctuation of radiative properties, but also on the profile of the mean absorption coefficient.

ICHMT Digital Library

Bow shocks on a jet-like solid body shape. Thermal Sciences 2004, 2004. Pulsed, supersonic fuel jets - their characteristics and potential for improved diesel engine injection. PULSED, SUPERSONIC FUEL JETS - THEIR CHARACTERISTICS AND POTENTIAL FOR IMPROVED DIESEL ENGINE INJECTION
View of engine compartment components (left). Plots of temperature distributions in centreplane, forward of engine (right). CHT-04 - Advances in Computational Heat Transfer III, 2004. Devel... DEVELOPMENT AND CURRENT STATUS OF INDUSTRIAL THERMOFLUIDS CFD ANALYSIS
Pratt & Whitney's F-135 Joint Strike Fighter Engine under test in Florida is a 3600F class jet engine. TURBINE-09, 2009. Turbine airfoil leading edge stagnation aerodynamics and heat transfe... TURBINE AIRFOIL LEADING EDGE STAGNATION AERODYNAMICS AND HEAT TRANSFER - A REVIEW
Refractive index reconstructed field. (a) Second iteration. (b) Fourth iteration. Radiative Transfer - VI, 2010. Theoretical development for refractive index reconstruction from a radiative ... THEORETICAL DEVELOPMENT FOR REFRACTIVE INDEX RECONSTRUCTION FROM A RADIATIVE TRANSFER EQUATION-BASED ALGORITHM
Two inclusion test, four collimated sources. Radiative Transfer - VI, 2010. New developments in frequency domain optical tomography. Part II. Application with a L-BFGS associated to an inexa... NEW DEVELOPMENTS IN FREQUENCY DOMAIN OPTICAL TOMOGRAPHY. PART II. APPLICATION WITH A L-BFGS ASSOCIATED TO AN INEXACT LINE SEARCH