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Uncertainty quantification techniques have the potential to play an important role in constructing constitutive rela-
tionships applicable to nanoscale physics. At these small scales, deviations from laws appropriate at the macroscale arise
due to insufficient scale separation between the atomic and continuum length scales, as well as fluctuations due to ther-
mal processes. In this work, we consider the problem of inferring the coefficients of an assumed constitutive model form
using atomistic information and propagation of the associated uncertainty. A nanoscale heat transfer problem is taken
as the model, and we use a polynomial chaos expansion to represent the thermal conductivity with a linear tempera-
ture dependence. A Bayesian inference method is developed to extract the coefficients in this expansion from molecular
dynamics (MD) samples at prescribed temperatures. Importantly, the atomistic data are incompatible with the contin-
uum model because of the finite probability of heat flowing in the opposite direction of the temperature gradient; we
present a method to account for this in the model. The fidelity and uncertainty in these techniques are then examined.
Validation is provided by comparing a continuum Fourier model against a larger all MD simulation representing the
true solution.

KEY WORDS: constitutive law, continuum, atomistic, Bayesian inference, uncertainty, Fourier model,
polynomial chaos expansion

1. INTRODUCTION

The goal of realizing predictive simulation rests upon development of constitutive relationships of sufficient accuracy
with quantified uncertainty. An area where existing constitutive models have particular difficulty is nanoscience and
engineering because macroscale relationships do not sufficiently resolve the physics at this small scale [1–5]. While
continuum mechanics can be derived from molecular mechanics [6, 7] in an average sense, well-known closures
from classical mechanics are often inadequate for problems in nanoscience and nanoengineering where atomistic
information becomes important. From a mathematical point of view, the challenge is that any nanoscale model must
be inherently stochastic and account for the different types of relationships present, e.g., finite length scales which
reduce the population of phonons present in a heat transfer problem. Meeting this challenge to develop accurate
constitutive models for continuum descriptions of nanosystems has the potential to enable a new generation of devices
characterized and optimized by predictive simulation.

To illustrate the origin of the constitutive modeling problem at atomic scales, the following observations are
useful. Discretized continuum models always have a smallest resolved length scale associated with the mesh size.
While mesh refinement can reduce this error and generate a family of solutions converging to the solution of the
originating continuum equations, in reality the applicability of the equations breaks down as the importance of the
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discrete atomistic processes becomes increasingly pronounced (e.g., [8]). In contrast, atomistic simulations have a
bounding length scale above as only a finite number of atoms can be simulated on a computer. As this length scale is
increased, statistical mechanics ever more accurately relates averages over the atomic system to established continuum
quantities [9].

One approach to incorporate atomistic information in continuum models is multiscale modeling. There have been
many efforts to develop techniques using a multiscale representation, for example in solid mechanics (see the review
article by Miller and Tadmor [10]), heat transfer [11, 12], and fluid mechanics [13, 14], although such methodolo-
gies are typically used for problems where the region requiring an atomistic description is (loosely speaking) on a
lower-dimensional manifold than the overall system of interest, e.g., interfaces, cracks, and defects. In addition, most
atomistic-to-continuum methods utilize continuum models based on macroscale behavior like Fourier’s law. A no-
table exception is the concurrent coupling method by Donev et al. [15] to directly simulate Monte Carlo particles and
continuum fluid mechanics, which demonstrated that the Landau-Lipfschitz Navier-Stokes equations, in which Brow-
nian fluctuations are retained, are required to obtain an accurate solution in some nanofluidics problems. It is crucial
therefore to derive constitutive laws with their associated uncertainties directly informed from atomistic simulations
to be appropriate models of the behavior of matter at the nanoscale.

In contrast to multiscale modeling to accurately capture atomistic behavior in small regions, our proposed approach
uses uncertainty quantification (UQ) to estimate constitutive models and their uncertainty so the effects of atomic
processes can be propagated through much larger regions. (We note there has been recent interest in applying UQ
to atomistic and atomistic-to-continuum systems [16–20].) Because of the difficulty in characterizing the mean and
fluctuating components of the constitutive relations using existing methods (even central limit theorems may not hold
due to small sample sizes), atomistic simulations have to be performed to extract suitable constitutive laws. Figure 1
shows a one-dimensional version of such problem. The continuum simulation is characterized from a large length
scale,Lc, down to the smallest resolved length scale representing the mesh size,h. The red dashed line illustrates an
atomistic region of appropriate size to characterize the subcontinuum information at that mesh size level. A molecular
dynamics (MD) simulation is performed in order to extract suitable constitutive relationships between the problem
variables.

FIG. 1: Schematic showing: (top) a one-dimensional continuum level finite element simulation domain characterized
by a length scaleLc, a time scaleτc, and a mesh sizeh, and (bottom) an atomistic scale simulation domain charac-
terized by a length scaleLa = 2h and a time scaleτa, where atomistic information is required to quantify physical
phenomena that are beyond the reach of the continuum description.
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In this paper, we focus on the study of a one-dimensional heat transfer problem at the nanoscale. This problem
offers the advantages of being efficient to simulate on both atomistic and continuum scales while retaining the com-
plexity atomistic-to-continuum coupling because the second law of thermodynamics only holds approximately at the
nanoscale [21]. Constitutive law extraction methodologies can also be assessed because the behavior of the atom-
istically informed continuum model can be compared to the true solution of a large atomic system. We present an
approach to extract the relationship between the heat flux and the temperature, as well as temperature gradient, from
MD simulations, together with its associated uncertainty.

The controlling assumption in this work is that heat conduction is governed by Fourier’s law, specifically, that the
heat fluxq is the product of the thermal conductivityκ and the temperature gradient∇T ,

q = −κ(T )∇T (1)

whereκ has a parametric dependency on the temperatureT . These parameters are inferred and expressed as polyno-
mial chaos expansions (PCE) due to the facility with which these expansions are capable of propagating uncertainty
in continuum simulations [22–26]. Furthermore, PCEs allow a faster convergence in the distribution of an uncertain
variable, unlike Monte Carlo methods [25]. The parameters are built using Bayesian inference [27–29], which has
been found highly effective in handling different sources of uncertainty including noisy data typically obtained in
MD simulations [16, 17]. We extract the heat conduction constitutive law and quantify its associated uncertainty as a
function of the spatial- and time-averaging scales and the amount of data used. These are closely related to the time
step and spatial discretization sizes in the continuum model. We then propagate the obtained constitutive law into a
continuum scale simulation and compare with an equivalent, but fully discrete simulation consisting only of atoms.

This paper is organized as follows. Section 2 overviews the MD and multiscale methods used in this work. The
mathematical formulation and specific formulation for the inferred conductivity with specific implementation details
are given in Section 3. Results are provided in Section 4 and some concluding thoughts are offered in Section 5.

2. MD SIMULATION

Figure 2 shows a stationary quasi-1D bar simulated by MD as a three-dimensional domain of sizeLa × w × w in
thex, y, andz directions, respectively. MD computations were performed with the LAMMPS [30] atomic simulator.
The domain height and width arew = 3.24 nm; it is occupied by argon atoms with mass 39.95 g/mol with a FCC
lattice constant ofα = 5.405 Å. The soft particle-particle interaction is modeled by the Lennard-Jones (LJ) pairwise
potentialφij [31–33]. For particlesi andj separated by a distancerij , φij is given by

φij = 4φ0

[(
ρ

rij

)12

−
(

ρ

rij

)6
]

(2)

FIG. 2: Schematic showing the MD simulation domain. The temperature is constrained in the red and blue regions
to beT = THOT andT = TCOLD, respectively. The black dots represent mesh points where the local heat flux,
temperature gradient, and temperature are extracted using the formalism of Zimmerman et al. [9].
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We set the LJ parameters for argon toφ0 = 0.238 Kcal/mole andρ = 3.405 Å [31]. Atomic motions are resolved
with a time step size of∆ta = 2 fs, which was seen to be sufficiently small to yield results independent of the time
step in numerical tests. The boundary conditions are periodic in they andz directions and fixed in thex direction.
As the fixed boundary atoms specify a lattice spacing, no energy minimization or prescribed pressure were used in
initializing or running the simulation.

This MD simulation is intended to model a quasi-1D heat transfer problem, thus we must impose Dirichlet bound-
ary conditions atx = 0 andx = La. To do so, we use the atomistic-to-continuum formalism originally proposed by
Wagneret al. [34] to partition the domain using a finite element (FE) mesh. Temperatures are held fixed at the left
(THOT ) and right (TCOLD) by augmenting the atomic forces from the interatomic potential using a Lagrange multi-
plier which takes the form of a Gaussian isokinetic thermostat varying on the length scale of the elements (see [35] for
further details on performing this type of simulation). It takes about 2.5 ns for the 1D bar to reach a statistical steady
state. At this time, short-time averaged samples of the heat fluxq (W.m−2), ∇T (K.m−1), andT (K) are collected
at the mesh points using the coarse-graining postprocessor of Zimmerman et al. [9] with a localization functionψ

characterized by a length scaleλa. The atomic heat flux is also computed according to the formula in Zimmerman et
al. [9] [Eq.(56) therein].

Figure 3 depicts the thermal steady state of the quasi 1D bar. Higher temperatures cause higher atom velocities
and more pronounced fluctuations resulting in higher variances in their statistical distributions. Thus, the noise level
slightly decreases when the temperature decreases fromTHOT to TCOLD which, for illustration, were chosen as
60 K and 40 K, respectively. The thermal conductivity is computed during the MD simulation as a finite difference
approximation taken on a coarse-grained continuum field, thus avoiding the need to take the derivative of atomistic
data [9]. In order to illustrate the thermal conductivityκ that results from MD simulations, we computeκ in this section
as the opposite of the short-term averaged flux divided by the short-term averaged temperature gradient. This exercise
results in a significant increase in the noise level since the value of temperature gradient samples could be close to
zero. In macroscale heat transfer, thermal conductivity is known to be a strictly positive property. However, whenκ is
computed on the atomistic scale and plotted as a function of temperature, it is not surprising to observe that it takes
negative values. Unlike at the macroscale scale, at such small atomistic time scales there is a substantial probability
that the heat flux is in the same direction as the temperature gradient. The negative values decrease with increasing
time averaging window sizes, as expected, and the probability density function (PDF) ofκ is seen to approach a
log-normal distribution.

3. MATHEMATICAL MODEL FORMULATION

In this section we describe the mathematical formulation for the inferred conductivity with specific implementation
details. Major steps of the inference process are illustrated in Fig. 4.

3.1 Building the Heat Conduction Constitutive Law

For givenLa, THOT , andTCOLD, we gather short-time averaged samples of the thermal entitiesq,∇T , andT at the
mesh points after the simulation reaches a statistical steady state. As such, we obtainNd independent noisy samples
{qj ,∇Tj , Tj}Nd

j=1. We use these samples as data in a Bayesian inference process to determine the posterior distribution
of the parameters that relateq,∇T , andT .

Given the assumption of a Fourier conduction law with temperature-dependent conductivity, Fig. 3 (thick black
line) suggests a decreasing trend forκ with temperature. Thus, we postulate the following linear relationship:

κ = A−BT (3)

whereA andB and their associated uncertainties are to be determined by the Bayesian inference machinery. The heat
flux q together with its noise have nonlinear dependence onT and∇T as suggested by Eq. (3). Yet, we found that the
noise level in allq, T , and∇T decreases with short-term averaging consistent with the central limit theorem (CLT).
Hence, we use a Gaussian noise model that relatesA andB to the short-time averaged samples{qj ,∇Tj , Tj} such
that
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FIG. 3: Plots showing (left column): (top) temperature gradient field∇T in the quasi-1D bar, (middle) temperature
field T in the quasi-1D bar, (bottom) thermal conductivityκ as function of temperature, (right column): the PDFs of
∇T , T , andκ at x = La/2. Results are generated from the MD simulation forTHOT = 60 K, TCOLD = 40 K, and
La = 53 nm when the statistical steady state is reached for different time averaging window widthstw, as indicated.
The thick black line denotes the calculated mean thermal conductivity as a function of temperature.

qj = −(A−BTj)∇Tj + σηj = −A∇Tj + BTj∇Tj + σηj (4)

where theηj represent the noise in the short-term MD sample averages. We do not consider any error due to model
inadequacy since we assume that−(A − BTj)∇Tj is a good approximation to the trueqj ’s up to a zero-mean error
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FIG. 4: Schematic illustrating the major steps of the constitutive law inference process.

term [17]. If for example the variation of theqj ’s followed a more complicated trend as a function of theTj ’s, a model
inadequacy term would have been necessary to obtain an accurate inference. We neglect the correlation between
theηj ’s and assume they are independent and identically distributed standard normals. The varianceσ2 of the noise
discrepancy is related to the fluctuations in the flux which depend on the temperature.σ2 is independent of the number
of samplesNd but decreases in a manner inversely proportional to the time averaging windowtw. We assume that the
dependence ofσ2 on the temperature is weak for the temperature ranges considered in this paper, thus we takeσ2 to
be a constant and infer it as a hyperparameter [29, 36] along withA andB. Bayes’ rule is then written as

P(A,B, σ2|q, d) ∝ P(q, d|A,B, σ2)P(A,B, σ2) (5)

whereq ∈ RNd is the heat flux dataqj andd ∈ RNd×2 is a matrix containing the temperature and temperature
gradient data obtained from the MD simulations such thatdj = (−∇Tj , Tj∇Tj) (the reader is referred to [16, 28, 29]
for the details regarding the Bayesian inference methods used in this work).

The likelihood function based on Eq. (4) is written as:

P(q, d|A,B, σ2) = (2πσ2)−Nd/2exp

(
−εT ε

σ2

)
(6)

where the elements of the discrepancy vectorε are given by

εj = σηj = qj + (A−BTj)∇Tj (7)

We assume independent priors forA, B, andσ2, i.e.,P(A,B, σ2) = P(A)P(B)P(σ2) and assign to bothA and
B an improper uniform prior [28] on[−∞, +∞]. Other choices of priors onA andB are possible; for example,
we can choose a prior that handles the issue of the negative conductivities (see Fig. 3). However, with such priors,
an analytical solution for the posterior is not available as discussed later in this section. For the hyperparameter,σ2,
leveraging the fact that there is a completea priori ignorance about its value except that it cannot be negative, we
assume a Jeffreys prior

P(σ2) =
1
σ2

(8)

If the likelihood (6) incorporates a large amount of data then the joint prior has a minimal role in the resulting posterior.
Conversely, if the likelihood function only brings a small amount of data, the distribution of the resulting posterior is
comparable to the prior. The effect of the amount of data will be discussed in Section 4.
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Based on the chosen priors and the Gaussian noise model, the corresponding posterior over{A, B} is a Student-t
distribution [26, 37, 38]S(γ, µ,S) where the mean vectorµ, the number of degrees of freedomγ, and the scale matrix
S are given by [26]

µ = νdq

γ = Nd − 2

S =
1
γ

(
qT q − qT dµ

)
ν

ν =
(
dT d

)−1

(9)

Thus we can expressA andB as (
A
B

)
= µ + Λξ ∼ S(γ, µ, S) (10)

whereΛ ∈ R2×2 is the lower-triangular Cholesky factor of the scale matrixS = ΛΛT , and the vectorξ ∈ R2

comprises independent and identically distributed (i.i.d.) random variables distributed according toS(γ, 0, 1). For
large values ofNd, the Student-t distributionS(γ, 0, 1) approaches the normal distributionN (0, 1), such that, in
this limit, P(A,B|q, d) is close to a binormal distribution.A andB are finally written as first order (p = 1) PCEs
[22–25, 39–42] with two stochastic dimensions (n = 2) representing the finite sampling noise [26]:

A = µ1 + L11ξ1

B = µ2 + L21ξ1 + L22ξ2 (11)

whereξ1 andξ2 follow N (0, 1) for largeNd [26]. The thermal conductivityκ = A−BT thus becomes an uncertain
variable and captures the uncertainty due to the limited amount of noisy MD simulations data. The uncertainty magni-
tude increases with the noise amplitudeσ and decreases withNd. In other words, the uncertainty magnitude increases
with the noise amplitudeσ and decreases withNd. Identifying and modeling the intrinsic uncertainty is beyond the
scope of this paper. Our main goal is to propagate this uncertainty in continuum simulation. However, since bothA
andB follow a Student-t distribution, they can take any value in[−∞,+∞] allowing for κ to have negative values
(see Fig. 3, bottom left) that are not mathematically feasible on the continuum level. Thus, additional operations have
to be performed on the distributions ofA andB to enforce the positivity ofκ.

Remark 1. The analytical solution obtained in this derivation is only feasible for a constant noise model in Eq. (4).
If the noise level is assumed to have a dependence on the temperature and temperature gradient, a sampling method
such as Markov Chain Monte Carlo should be used in order to construct the posterior in Eq. (5).

3.1.1 Enforcing the Positivity of the Thermal Conductivity

The mathematics of the diffusion equation require a positive thermal conductivity everywhere. However, the proce-
dure described above would result in negative values as, due to nanoscale fluctuations, the heat flux can follow the
temperature gradient with nonzero probability. In order to guarantee that well-posed solutions exist for the continuum
heat transport equations, we propose a set of operations on the distributions ofA andB that allow enforcing the
positivity of κ = A − BT for a given rangeTCOLD ≤ T ≤ THOT . The effect of the procedures is to build new
distributions forA andB. We proceed as follows:

1. We draw a large number,Ns, of realizations(A,B)i from the Student-t distributions ofA andB derived in
Section 3.1.

2. We eliminate from this set of realizations all the(A,B)i that satisfyAi−BiTCOLD < 0 or Ai +BiTHOT < 0.

3. Using kernel density estimation (KDE) [26, 43], we build new distributions forA andB from the remaining
realizations.
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Remark 2. Another method to enforce the positivity ofκ = A−BT is to assign an appropriate prior onA andB in
the Bayesian inference procedure in Section 3.1. The prior expression would then be

P(A,B) = 0, for A−BTCOLD < 0 or A + BTHOT < 0

P(A,B) =
1

(Amax −Amin)(Bmax −Bmin)
, otherwise (12)

whereAmax, Amin, Bmax, andBmin determine a known range of variation ofA and B. However, this approach
would not not allow an analytical derivation for the distributions ofA andB. It requires sampling the posterior in
Eq. (5) using the Markov Chain Monte Carlo method. The samples that do not satisfy the constraints of Eq. (12) are
rejected from the chain which is equivalent to the elimination performed in step 2 above.

Remark 3. The initial number of realizationsNs should be large enough such that after eliminating the(A,B)i,
the number of the remaining realizations is sufficient for statistical significance of the resulting distribution. In our
computations, we needed 10000 samples to obtain an accurate distribution ofκ.

Remark 4. Another approach to eliminate negative thermal conductivities is by applying bigger time averaging
scalestw on the raw MD data (see Fig. 3). The approach we adopted in this study is more general and applicable
to complicated and expensive MD simulations where it is not feasible to use high values oftw, or when continuum
models are desired to operate at time scales below the limiting behavior.

3.1.2 Spectral Projection of the Thermal Conductivity

The distributions ofA andB obtained in Section 3.1.1 are not guaranteed to follow any of the traditional distributions
such as normal, log-normal, uniform, etc., particularly for the smaller sample sizes. Thus, the representation of the
random variablesA andB as PCEs generally requires higher order polynomials. We first employ a Rosenblatt trans-
form to map the jointly distributed random variablesA andB (after enforcing the positivity of their corresponding
κ) into two independent uniform random variables. We then apply an approximate inverse Rosenblatt to compute the
PC coefficients ofA andB at a given expansion order. These operations are further detailed in the work of Sargsyan
et al. [44, 45]. In this work we performed a convergence study and found that a fourth-order expansion (p = 4, see
Table 1 below) with two stochastic dimensions (n = 2) can accurately represent bothA andB. Hence, after enforcing
the positivity ofκ, A andB are written as

A =
P∑

k=0

AkΨk(ξ1, ξ2)

B =
P∑

k=0

BkΨk(ξ1, ξ2) (13)

where theΨk ’s are Hermite polynomials given in [25, 46]. The number of terms in this expansion in this work is
P = 14.

Figure 5 (top row) shows PDFs ofA andB before and after enforcing the positivity ofκ = A − BT . A andB
were sampled from Eqs. (11) and (13), respectively. The PDFs were then constructed using KDE. After enforcing the
positivity, the mean ofκ increases, which physically implies that more heat is transported in the material when the
effects of the backward propagating phonons are eliminated. The effect of enforcing the positivity ofκ on its PDF
decreases when more data are used in the inference process. A larger amount of data and/or a longer time averaging
window reduces the uncertainty in the inferred values and shifts the PDF ofκ shifts away from the negative regions.
Figure 5 (bottom row) shows the posterior distribution forA andB before and after enforcing the positivity ofκ.
Enforcing the positivity ofκ eliminates a significant region from the posterior support yielding to sharp edges at its
boundary. The expected sharp edge of the PDF ofκ near zero is slightly smoothed due to the use of the KDE method
to construct the PDF. The area of the eliminated region decreases relatively with increasing time averaging window
consistent with the observations in Fig. 3.
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FIG. 5: Plots showing (top row) the PDFs of: (left) the inferred coefficientA, (middle) the inferred coefficientB, and
the corresponding the thermal conductivityκ for T = 50 K. The PDFs of the coefficients are plotted before (solid line)
and after (dashed line) enforcing the positivity ofκ, and (bottom row) the posterior forA andB before (black dots)
and after (color dots) enforcing the positivity ofκ. Results are obtained from data averaged attw = 8 ps for different
amountsNd of data used for the inference, using four replica MD simulations forTHOT = 60 K, TCOLD = 40 K,
andLa = 53 nm.

3.2 Numerical Implementation

We propose two sampling approaches to generate the Bayesian inference data{qj ,∇Tj , Tj}Nd
j=1. We call the first

approach “local” where the data is obtained from a single MD simulation with specifiedTHOT andTCOLD. This was
the case for the results generated in Fig. 5 whereTHOT = 60 K andTCOLD = 40 K. The other sampling approach
called “global” relies on multiple MD simulations for the heat flux data. For convenience, we characterize each MD
simulation by a mean temperatureTMD and a temperature difference∆TMD such that

TMD =
THOT + TCOLD

2
(14)

∆TMD = THOT − TCOLD

The local sampling approach used a single MD simulation with a fixed value of{∆TMD, TMD} while the global
sampling relies on 25 MD simulations covering the following parameter values:∆TMD = 10, 20, 30, 40, and 50 K
andTMD = 30, 40, 50, 60, and 70 K, chosen just for illustration. Data obtained from these two approaches are
plotted in Fig. 6. A higher∆TMD allows for better control of the heat flux during the MD simulation so there
are fewer fluctuations in the resulting data. Moreover, the global sampling approach covers a broader range of both
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FIG. 6: Plots showing: (left) short-time averaged values of the thermal conductivityκj = −qj/∇Tj as a function of
the temperatureTj , and (right) samples of the temperatureTj plotted as a function of the temperature gradient samples
∇Tj . Results are obtained from data averaged attw = 512 ps, using four replica MD simulations for different ranges
of temperature by local and global sampling of the{∆TMD, TMD} space, as indicated.

the temperature and temperature gradient. Figure 6 (left) shows that for the selected{∆TMD, TMD} of the local
sampling approach, the thermal conductivityκ decreases linearly with temperature, consistent with our assumption
in Section 3. However, the global approach covers a larger temperature range and this linear trend is lost at lower
temperatures beginning aroundT = 20 K. A linear dependence betweenκ andT was assumed for both “local”
and “global” approaches in this paper but for the lower temperatures (e.g.,T = 20 K), a more accurate prediction
of the heat conduction law would then be obtained by assuming a higher order polynomial for the dependence of
κ on T . We expect that in the case of a local sampling with high∆TMD and in the global sampling approach,
a relatively smaller uncertainty will be obtained in the inferredA andB (the slope of the curve) with associated
improved accuracy in the predicted heat conduction constitutive law for the form of the linear polynomial used in the
present effort.

3.3 Propagating the Uncertain Constitutive Law into the Continuum Simulation

In this section we propagate the uncertainty in the thermal conductivityκ quantified in the previous section into a 1D
continuum problem. Figure 7 shows the schematic of such a continuum simulation. The length scale of this simulation
should be at least an order of magnitude bigger than the atomistic simulation length scale, i.e.,Lc ≥ 10La, to get into

FIG. 7: Schematic showing the 1D continuum simulation domain. Dirichlet boundary conditions are imposed on the
bar, as indicated. The bar has a lengthLc ≥ 10La. The black dots represent mesh points such that the mesh size is
equal toLa/2 (see Figs. 1 and 2).
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a regime where the continuum formulation is valid. We discretize the continuum simulation domain such that the local
shape functions spread over a length scale comparable to the atomistic simulation domain size, i.e., the mesh sizeh is
given by2h = La. Consistent with the MD simulation, we impose Dirichlet boundary conditions on the continuum
domain.

Given the assumed heat conduction constitutive law in Eq. (3), the partial differential equation (PDE) governing
the heat conduction in the continuum scale 1D bar is written as:

ρcp
∂T

∂t
=

∂

∂x

[
−(A−BT )

∂T

∂x

]
(15)

where the random variablesA andB are given by the PCEs in Eq. (13). We propagate the uncertainty inA andB
through the PDE above using a nonintrusive spectral projection (NISP) scheme (see [22–26] for details).

4. RESULTS

4.1 The PC Representation of the Constitutive Law

We first describe the PC coefficients ofA andB, and the resulting thermal conductivityκ. The PCEs ofA andB are
given in Eq. (13). For a fixed temperatureT , the PCE ofκ is given by

κ =
P∑

k=0

(Ak −BkT )Ψk(ξ1, ξ2) (16)

We perform a convergence study on the moments of the distributions ofA, B, andκ as a function of the expansion
orderp. The results of this study are given in Table 1 for the case with highest uncertainty considered in this study, in
terms of mean and standard deviation, computed following [23–25]:

µκ = κ0

σκ =

√√√√
P∑

k=1

κ2
k〈Ψ2

k〉 (17)

For p = 4, the values are essentially unchanged and thus we pick an expansion orderp = 4 for the rest of the results
shown in this section.

For brevity, we plot in Fig. 8 the first four PC coefficients ofA as a function of the amount of dataNd for
different time averaging windowstw in MD simulations. The PC coefficients ofB follow similar trends. AsNd and
tw increase,A0, the coefficient representing the mean ofA, approaches a constant value, indicating a more accurate
solution. Concurrently, all other PC coefficients that describe the uncertainty decrease. Increasingtw reduces the
fluctuations in the instantaneous temperature, temperature gradient, and heat flux extracted from MD simulations.
Similarly, increasingNd improves the posterior prediction of the Bayesian inference procedure by increasing the
likelihood of the data. The local sampling approach results in higher values of PC coefficients for allk > 0 than the
global sampling approach. The latter covers a larger range of temperatures and temperature gradients, as discussed
in Section 3.2, and results in more accurate predictions of the inferredA. In the local sampling approach, a smaller
∆TMD results in higher PC coefficients fork > 0, i.e., higher uncertainty as expected from the observations on the

TABLE 1: The mean and standard deviation ofA, B, andκ for different PC expansion orders
p = 2 p = 3 p = 4 p = 5

(µA, σA) (W.m−1.K−1) (1.499,1.079) (1.487,1.077) (1.484,1.071) (1.484,1.071)
(µB , σB) (W.m−1.K−2) (0.0222,0.0197) (0.0216,0.0189) (0.0212,0.0187) (0.0212,0.0187)
(µκ, σκ) (W.m−1.K−1) (0.389,0.148) (0.407,0.157) (0.424,0.175) (0.423,0.174)

Volume 4, Number 2, 2014



162 Salloum & Templeton

10
1

10
3

10
5

0

0.5

1

1.5

A
0

10
1

10
3

10
5

10
−3

10
−2

10
−1

10
0

A
1

10
1

10
3

10
5

10
−18

10
−17

10
−16

A
2

10
1

10
3

10
5

10
−6

10
−4

10
−2

10
0

Nd

A
3

10
1

10
3

10
5

0

0.5

1

1.5

10
1

10
3

10
5

10
−3

10
−2

10
−1

10
0

10
1

10
3

10
5

10
−18

10
−17

10
−16

10
1

10
3

10
5

10
−6

10
−4

10
−2

10
0

Nd

10
1

10
3

10
5

0

0.5

1

1.5

10
1

10
3

10
5

10
−3

10
−2

10
−1

10
0

10
1

10
3

10
5

10
−18

10
−17

10
−16

10
1

10
3

10
5

10
−6

10
−4

10
−2

10
0

Nd

10
1

10
3

10
5

10
−8

10
−6

10
−4

Nd

Local sampling

TMD =50K

∆TMD =10 K

Local sampling

TMD =50K

∆TMD =20 K

Local sampling

TMD =50K

∆TMD =30 K

Global sampling

30 ≤ TMD ≤ 70

10 ≤∆TMD ≤ 50

tw =128 pstw =32 ps tw =512 ps

FIG. 8: Plots showing the first four PC coefficients as a function of the amount of data,Nd, used for the inference
of the inferred coefficientA. Results are obtained after enforcing the positivity ofκ from data averaged at different
values oftw, using four replica MD simulations for different ranges of temperature by local and global sampling of
the{∆TMD, TMD} space, as indicated.

data in Section 3.2. The logarithmic slope of the decrease inA1 with Nd is very close to the value of 0.5 expected
from the CLT. In fact,A1 is closely related to the normal part of the distribution ofA. However, the remaining PC
coefficients exhibit a more complicated trend as a function ofNd. First, we notice that some modes, such asA2, have
negligible amplitudes, meaning they do not participate in assessing the distribution ofA. Secondly, there is a rapid
drop in A3 occurring forTMD = 50 K and ∆TMD = 10 K, at particular values ofNd and tw. This drop in PC
coefficients ofA as a function ofNd is not seen when the positivity ofκ is not enforced, i.e., if Rosenblatt tranforms
are not performed. Hence, this drop is related to the changes in the PDFs ofA shown in Fig. 5 after enforcing the
positivity of κ.

We also describe the PC coefficients ofκ = A − BT and their dependence onNd andtw. The PC coefficients
of κ are given in Eq. (16) where the temperatureT is chosen to beT = 50 K. These PC coefficients are plotted in
Fig. 9 before and after enforcing the positivity ofκ. Note that in the former case,κ follows a Student-t process that
we approximate by a Gaussian process as discussed in Section 3.1. Therefore,κ is described by a first-order PCE with
two stochastic dimensions, i.e., it is described by three PC coefficients as shown in Fig. 9 (left column). Similarly to
A0, κ0 approaches a constant value asNd andtw increase.κ0 is seen to increase withtw as it reaches a constant value.
This increasing trend may be attributed to the fact that we are assuming a constant noise model in the inference of A,
B, andκ (see the remark at the end of Section 3.1).
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FIG. 9: Plots showing the PC coefficients as a function of the amount of data,Nd, used for the inference of the thermal
conductivityκ for T = 50 K before (left) and after (right) enforcing its positivity. Only the first four PC coefficients are
shown after enforcing the positivity ofκ. Results are obtained from data averaged attw = 128 ps, using four replica
MD simulations for different ranges of temperature by local and global sampling of the{∆TMD, TMD} space, as
indicated.

Before enforcing the positivity ofκ, κ1 andκ2 follow the expected decreasing trend that is consistent with the CLT,
i.e., the decrease is proportional to

√
Nd. After enforcing the positivity ofκ, the PC coefficients exhibit different trends.

While κ1 andκ2 show a linear decreasing trend withNd, the decreasing trend of the higher modes is complicated and
is probably related to the nature of the PDF ofκ shown in Fig. 5.

4.2 The Inferred Constitutive Law

Given the PCE ofκ, we now can compute the heat fluxq as a function of the temperatureT and the temperature∇T .
For a fixedT and∇T , the PCE ofq can be computed as

qk = −(Ak −BkT )∇T (18)

Thus, the expectation ofq at a given temperature and temperature gradient is given by its first PC coefficient
following Eq. (17),

E[q] = −(A0 −B0T )∇T (19)
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while the standard deviation ofq is given by:

σ[q] =

√√√√
P∑

k=1

[(Ak −BkT )∇T ]2 〈Ψ2
k〉 (20)

For representative ranges ofT and∇T , we plot in Fig. 10 the isosurfaces ofE[q] andσ[q] surface withA and
B inferred from MD simulations data atTMD = 50 K and ∆TMD = 20 K for different values oftw. To aid in
visualization, the data have been plotted over a symmetric range about zero in the temperature gradient. Scanning from
left to right demonstrates how the mean values change as a bigger time averaging window is used in the inference,
commensurate with a reduction in the standard deviation. Also importantly, it is possible to see how the enforcement

FIG. 10: Plots showing the expectationE and standard deviationσ of the fluxq = −(A−BT )∆T surface obtained
after the inference ofA andB, as a function of the amount time averaging windowtw. Results are obtained from
Nd = 16 short-time averaged(qj ,∇Tj , Tj) data, using four replica MD simulations by local and global sampling of
the{∆TMD, TMD} space, as indicated.q is given in W.m−2,∇T in K.m−1, andT in K.
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of the positivity ofκ impacts the overall distribution. The effects of this enforcement are most clearly visible for
smaller values oftw because of the greater probability of phonons propagating with the temperature gradient rather
than against it. Hence, when the conductivity is inferred from small spatial and/or temporal windows, the data-based
restriction ofκ to be positive effectively removes the negative conductivity samples and results in an overprediction of
the heat flux. The results of all the “local” sampling approach (∆TMD = 20 K) and the “global” approach are plotted
together in Fig. 11, which shows similar standard deviation, while the globally sampled inference demonstrates a
higher heat flux at lower temperatures. This is expected behavior for solids in which the phonon population increases
at higher temperature, and the increased collision frequency reduces the conductivity.

4.3 Discussion

The generation of the MD data in the global sampling approach considered in this study costs 25 times more than the
local sampling approach since more MD simulations had to be performed. This additional cost incurred benefits to
the inference of the thermal conductivity. As mentioned in Section 3.2, the heat flux surface inferred using a global
sampling approach occupies a bigger area in the{T,∇T} space [see Fig. 6 (right)] allowing one to solve heat transfer
problems with a variety of temperature ranges. The global sampling appraoch also resulted in a lower uncertainty level
in the inferred parameters. The choice between a local and a global sampling depends on the scope of the continuum
scale problem to be addressed, e.g., the temperature ranges and acceptable levels of uncertainty. There is a trade-
off between spending an additional computational cost to generate data in a global sampling setting and affording
restricted ranges of temperature with increased levels of uncertainty.

FIG. 11: Plots showing the expectationE and standard deviationσ of the flux q = −(A − BT )∆T surface ob-
tained after the inference ofA andB. Results are obtained fromNd = 16 short-time(fj ,∇Tj , Tj) data averaged at
tw =512 ps, using four replica MD simulations for different ranges of temperature by local and global sampling of
the{∆TMD, TMD} space, as indicated.
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4.4 Continuum Simulation using the Inferred Constitutive Law

To demonstrate the model in an application, we propagate the uncertainty obtained in the thermal conductivity in a
continuum scale simulation of a 1D bar as described in Section 3.3. We select the 1D bar length to be 10 times the
one used in the atomistic simulation such thatLc = 10La = 0.53 µm. For givenTMD, ∆TMD, time averaging
window tw, and number of samplesNd, we interpolate the values of the PC coefficients ofA andB (κ = A − BT )
from the curves plotted in Fig. 8. During the simulation, we assign Dirichlet boundary conditionsTc,1 = THOT and
Tc,N = TCOLD that are held fixed throughout the simulation, whereTHOT andTCOLD are calculated by Eq. (15) for
the givenTMD and∆TMD.

Propagating the uncertaintyκ in Eq. (15) results in an uncertain temperature field that we express by a PCE:

T (x, t) =
P∑

k=0

Tk(x, t)Ψ(ξ1, ξ2) (21)

Based on Gauss-Hermite quadrature points [25], we calculate deterministic values ofA andB that we use to compute
a deterministic temperature field by solving the PDE [Eq. (15)]. We then use the ensemble of solutions to determine
the PC coefficientsTk(x, t) based of the non-intrusive spectral projection (NISP) approach [25]. The number of
quadrature points per stochastic dimension should be at least equal ton = (2p + 1)/2 [25] in order to obtain an
accurate projection of the random entities. We thus choosen = 5 Hermite quadrature points per dimension, which
implies 25 deterministic solutions of Eq. (15) are required. The values ofρ andcp for solid Argon were calculated
from the literature [34, 47] atT = (Tc,1 + Tc,N )/2.

The PCE of the resulting temperature field is computed at each time step until a steady state is reached. We report
the results in terms of the mean temperature given by the first PC coefficientE[T ] = T0 and the standard deviation of
the temperature computed as

σ[T ] =

√√√√
P∑

k=1

T 2
k 〈Ψ2〉 (22)

This resulting uncertainty has the same nature as the uncertainty in the inferredA andB in Section 3.1. It depends on
the time averaging windowtw as well as the amount of dataNd used in the inference. Hence, it reflects the lack of
knowledge in the variables due to the finite amount of data.

In order to evaluate the model, we also simulated the same continuum scale heat transfer in the 1D bar directly
using MD. Here we extract the variablesq,∇T , andT using a localization function characterized with a length scale
λc = 10λa (see Section 2). Thus, we expect the fluctuation amplitude in the variables to be reduced by a factor of√

10. This MD simulation requires substantial computational resources compared to the MD simulations described
in Section 2 due to the increased system sizeLc = 10La. Specifically, while the validation MD simulation required
about 9.5 days on 256 computing nodes, all the MD samples together with the inference of the positivity enforced
thermal conductivity and the continuum scale simulation needed about only 10 h using 256 nodes. We denote the large
validation simulation by the “true” MD simulation. We first compare the results of these two simulations approaches
of the large 1D bar in Fig. 12 in terms of the mean of the temperature. There is reasonable agreement between
the mean of the temperature computed using the two approaches when a time averaging windowtw > 128 ps is
used. Here, “reasonable” denotes that the large MD calculation is within the estimated uncertainty of its continuum
approximations. At such large time scales, the mean of the thermal conductivity described byκ0 reaches a constant
value as depicted in Fig. 9. However, at smaller time scales, this mean is not accurately predicted and results in
discrepancies between the modeled continuum and true MD solutions. Another undesirable property of this method
is that the estimates converge monotonically from below asNd and/ortw increase, indicating that the estimate of the
true solution is biased when using this method.

5. CONCLUSION

The goal of this paper was to assess the feasibility of determining unknown constitutive relationships from atomistic
simulation data for use in continuum nanoscale models. As a test case, we chose one-dimensional heat conduction
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FIG. 12: Plots showing the (left column) temporal evolution of the mean and standard deviation of the temperature
in the middle of a continuum scale 1D bar (x = 0.26 µm), and (right column) the steady-state mean and standard
deviation of temperature distribution in the bar. Results are generated using two approaches: (blue, green, and red
lines) by propagating the uncertain thermal conductivity inferred from MD simulations into a continuum simulation,
and (black dots) the “true” MD simulation of the continuum scale bar (Lc = 0.53 µm). The error bars represent the
calculated standard deviation in the temperature. Results are obtained forTc,1 = 60 K and Tc,N = 40 K and for
different time averaging windowstw, as indicated. The thermal conductivityκ is extracted from MD simulations for
different values ofNd, as indicated.

as a model system because previous multiscale modeling efforts had established the connection between atomistic
simulation and continuum Fourier thermal transport. Several approaches were reported. First, individual small MD
simulations were performed and averaged to obtain estimates of the conductivity matching an assumed functional
form. Efficient estimation was obtained by regarding the parameters defining the thermal conductivity as uncertain
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variables represented by PCEs. These parameters were determined using Bayesian inference. Only a small number of
MD replica simulations were required to obtain a sufficient number of samples by averaging the data over different
time windows using the local approach. A second sampling strategy was also considered in which multiple MD
samples were performed with different temperatures and temperature gradients to explore the global behavior of the
conductivity. For problems in which the temperature range is known, the local approach is more efficient, while the
global approach is a more robust choice when temperature distributions are not knowna priori.

Direct inference of the thermal conductivity demonstrated that it is well approximated by a normal distribution
with decreasing variance as the time averaging window size increased, demonstrating convergence to well-established
classical theories. However, microscale heat transport is mediated by distributions of phonons which both along travel
and against the temperature gradient. Because diffusion equations are ill-posed when the conductivity is negative,
it is necessary to enforce the constraint that the conductivity is always positive. Doing so artificially enhanced the
conductivity for smaller sample sizes and time averaging windows because negative heat fluxes were effectively
removed, biasing the conductivity in the positive direction. It was shown that the process produced conductivity values
which converged to their uncorrected values in the limits of large time windows. Enforcing positivity also increased
the number of nonzero coefficients of the PC expansion since its order had to be slightly increased.

Assessment of the model was made by using the inferred conductivities in a 1D model of thermal transport
from a hot temperature reservoir to a cooler one. This configuration enabled a direct comparison against the same
physics modeled exclusively with molecular dynamics, which was taken to be the true solution. Importantly, the MD
samples from which the conductivity was inferred were much smaller than the final system, demonstrating a significant
potential cost savings.For larger sample sizes obtained either directly or through increased time averaging, the “true”
MD simulation was generally within the uncertainty of the continuum scale simulation as estimated from the PCE.
It was observed that as the MD averaging time window grew larger, the inferred conduction models converged to the
mean solution, albeit in a biased fashion, and had correspondingly lower uncertainty.

Given these results, we conclude that sampling and inference methods have promise to be used in a wide variety
of problems in which constitutive relations are needed to efficiently simulate a coarse-grained model at the nanoscale.
In addition to high-fidelity measurements of the constitutive model, its uncertainties due to both finite sample sizes
as well as physical stochasticity can be propagated through the solution process to assess confidence in the resulting
solution within this framework. However, fluctuations at the nanoscale may render constitutive model forms suggested
by either macroscale intuition or mean values from atomistic simulations inappropriate. Part 2 of this series will
explore mechanisms to generalize the continuum model and the changes to the Bayesian processes necessary to
exploit them.
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