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Mathematical modeling of technical applications often yields systems of differential algebraic equations. Uncertainties
of physical parameters can be considered by the introduction of random variables. A corresponding uncertainty quan-
tification requires one to solve the stochastic model. We focus on semiexplicit systems of nonlinear differential algebraic
equations with index 1. The stochastic model is solved using the expansion of the generalised polynomial chaos. We
investigate both the stochastic collocation technique and the stochastic Galerkin method to determine the unknown
coefficient functions. In particular, we analyze the index of the larger coupled systems, which result from the stochastic
Galerkin method. Numerical simulations of test examples are presented, where the two approaches are compared with
respect to their efficiency.
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1. INTRODUCTION

In technical applications, mathematical modeling of dynamical systems often results in differential algebraic equations
(DAEs), i.e., a mixture of ordinary differential equations (ODEs) and algebraic equations. For example, network
approaches yield large systems of DAEs corresponding to mechanical multibody dynamics or electric circuits [1-3].
Systems of DAEs exhibit qualitatively different properties than systems of ODEs. The index, which represents an
integer (number), indicates the level of the differences between a particular system of DAEs and a general system of
ODEs. Several concepts for the definition of an index exist. Numerical methods for initial value problems of ODEs
are transferred into integrators for DAES, where attention must be paid also in dependence on the index of the systems
[4, 5].

We assume that uncertainties are inherent in some physical parameters of the dynamical system. Corresponding
parameters are replaced by random variables to achieve an uncertainty quantification. The random-dependent system
of DAEs can be resolved by a quasi Monte Carlo simulation, for example. Alternatively, we consider techniques
based on the expansions of the generalized polynomial chaos (gPC) [6-8]. The unknown coefficient functions can
be determined either via a stochastic collocation method or the stochastic Galerkin approach [9, 10]. Thereby, the
stochastic Galerkin technique yields a larger coupled system of DAEs satisfied by an approximation of the coefficient
functions.

The gPC expansions have already been applied for the simulation of systems of DAEs with random parameters
in [11-13], where the focus is on periodic boundary value problems. In the case of linear systems of DAESs, the
index of the coupled systems of the stochastic Galerkin method is analyzed in [14]. All index concepts are equivalent
for linear DAES. In this paper, we consider semiexplicit systems of nonlinear DAEs with a differential index 1. For
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semiexplicit DAESs, the differential index is 1 if and only if the perturbation index is 1 [15]. It is obvious that the index
of the DAEs coincides within stochastic collocation methods. We examine the index of the larger coupled system of
DAEs, which is obtained by the stochastic Galerkin technique.

The approach of the stochastic collocation and the stochastic Galerkin method are compared in this paper. On the
one hand, the properties of the involved systems of DAEs are analyzed using the corresponding index. On the other
hand, numerical simulations of initial value problems are performed to investigate the efficiency of each method,
which is done by a comparison of both accuracy and computational effort.

The paper is organized as follows. We introduce the random-dependent systems of DAEs in Section 2. The stochas-
tic collocation techniques and the stochastic Galerkin method are outlined. We analyze the index of the coupled sys-
tems from the Galerkin approach in Section 3. Numerical simulations of four test examples are illustrated in Section 4,
where the efficiency of both gPC techniques is compared.

2. STOCHASTIC MODELING

In this section, we define the stochastic model and apply the expansions of the generalized polynomial chaos for the
corresponding solutions.

2.1 Problem Definition

We consider dynamical systems of the form
A(p)x(t,p) = £[t, x(t,p), pl, @

where parameters = (p1,...,pg) With p € II C R? are involved. The solutior : [to,#;] x II — R" depends
on time as well as the parameters. In the case of a regular mass fritr¥d (p)] # 0}, the system (1) represents
implicit ODEs. In case of a singular mass matfiet[A(p)] = 0}, we obtain a system (1) of DAEs. We consider
initial value problems

X(tfh p) = X0 (p)v (2)

where the initial values are allowed to depend on the parameters.
We assume that the parameters include some uncertainties. Consequently, we substitute the parameters by random
variables
p: Q=1 p(w)=[pi(w),...,po(w)]

defined on some probability spac@, A, ). We apply independent distributions in this modeling, where a corre-
sponding probability density functign: IT — R is available. A random variablecan describe the perturbation of a
physical parameter, i.e.,

r(w) := Ap(w) + ro 3)

with constants\, 7, € R. Thus, a standardized variable with) = 0 and (p?) = 1 can be used in the modeling,
whereas the information ok, r is included in the system (1). The solutistt, p) of the dynamical system (1)
becomes a random process, depending on time as well as the random parameters. We are interested in the key data of
this random process, such as the expected value and the standard deviation, for example. More sophisticated data may
also be resolved.

We define the function spaces as

thnp) = {rim—  [ 170)otw) dp < o
IT
for each integek. Given a functionf € L'(I1, p), we apply the notation

Um»:zjmmmwp ()

International Journal for Uncertainty Quantification



Polynomial Chaos for Semiexplicit Differential Algebraic Equations 3

for the corresponding expected value. For two functigng € L?(IL, p), the expected value (4) implies the inner
product

(f(p)g(p)) = /Hf(p)g(p)p(p) dp. (5)

We employ this notation also to vector- and matrix-valued functions by each component separately.
In this paper, we consider semiexplicit systems of DAEs, i.e., the dynamical system (1) becomes

y'(t,p) = flt,y(t, p) z(t p) pl

(6)
0 glt,y(t p),z(t, p), p]

with the differential variabley : [to,t;] x II — R™v and the algebraic variables: [to,t;] x II — RM=. The
right-hand sides exhibit the dimensiohs R"v andg € R™=. We assume that the right-hand sides are continuous
or sufficiently smooth if required.

A system of DAEs features different properties than a system of ODEs. The level of these differences is character-
ized by the index of the system of DAES, where several index concepts exist [5]. We focus on semiexplicit systems (6)
of differential index 1 and perturbation index 1. In case of semiexplicit DAESs, the differential index is 1 if and only if
the perturbation index is 1. An equivalent condition is that the Jacobian néglyidz € RV=*V= is regular, i.e.,

og
det (8) 40 %

for all involved solutions and parameters in each time poiat[to, t1]. If (7) holds, then DAEs of the form (6) are
also called Hessenberg DAEs of index 1. Dynamical systems (1) with a constant mass[aA@ijix= Ag] can be
transformed directly into an equivalent semiexplicit system (6) of the same dime@gjon (V. = V) and the same
index. Moreover, each system of the form (1) can be converted into a corresponding semiexplicit system (6) with
N, = N, = N usingy := x andz := y’, where a higher index appears in general.

We specify an initial value problem via

y(to,p) =yo(p), z(to,P) = 2o(P) 8)

with predetermined parameter-dependent functigng,. In the case of the semiexplicit systems (6) of index 1, the
initial values (8) must satisfy the consistency condition

g(to,yo(p),2zo(p),p) =0 9)

for eachp € II. Hence, the initial values, follow from the choice of the initial valueg, by the implicit function
theorem. Even if the initial valuggs, are independent of the parameters, the initial vahgedepend on the parameters

if the functiong does. Thus, we consider parameter-dependent initial values (8) in general. For semiexplicit DAEs of
higher index, hidden consistency conditions exist in addition to the algebraic constraints (9).

2.2 Generalized Polynomial Chaos

Considering random parameters, the stochastic model [(6) and (8)] can be solved by a (quasi) Monte Carlo simulation,
for example. Alternatively, we consider spectral methods based on the polynomial chaos [7, 8]. We assume finite
second moments of the components of the differential and algebraic variables corresponding to a solution of the
stochastic model [(6) and (8)]. It follows that the expansions:

ylt,p(w)] =) vit)®ilp(w)],  at,p(w)] =Y wi(t)®i[p(w)] (10)
=0 =0

converge with respect to the norm b# (11, p) for eacht € [to, t1]. The series include orthogonal basis polynomials
®, : I — R. Thus, let(®;®;) = d;; with the Kronecker delta symbol. The basis polynomials follow from the
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probability distributions of the random parameters [16]. Thereby, the multivariate basis polynomials are the prod-
ucts of corresponding univariate basis polynomials. If all random parameters exhibit Gaussian distributions, then the
traditional homogeneous polynomial chaos appears. In the case of non-Gaussian random parameters, we obtain the
generalized polynomial chaos (gPC).

The coefficient functions; : [tg,t1] — R™v andw; : [to, t;] — RY= are unknown a priori. These time-dependent
functions satisfy the equations

vi(t) = (y(t,p)®:(p)), wi(t) = (z(t,p)P:i(p))- (11)

Assuming®, = 1, it follows v = (y) andwg = (z).
In practice, the gPC expansions (10) have to be truncated. The resulting finite approximations read

y D (¢ ZVZ o zM) (¢ Zwl i (12)

for some integert/. Often all basis polynomials up to a certain degree are chosen in the finite sums. We can also
apply different bases or different ordeV$ in the differential part and the algebraic part, respectively.

The coefficients in Eq. (12) yield approximations of the expected value and the variance of the random process.
Nevertheless, more sophisticated quantities are also reproduced approximatively by this approach. For example, a
truncated series (12) represents a surrogate model, which can be used to compute failure probabilities (cf. [12, 17]).

2.3 Stochastic Collocation Techniques

We want to determine approximations of the coefficient functions involved in the truncated gPC expansion (12).
Because of the property (11), the unknown coefficient functions represent evaluations of probabilistic integrals.
Thus, we achieve an approximation of the coefficient functions by a quadrature formula. We choose grid points

pM, ..., p) e IIin the domain of the parameters. It follows the approximations
K
)= wp®i(p®)y(t,p™), Wi Z wr®; (p .p™) (13)
with weightsw, ..., wg € R.

For small numberg) of parameters, a multivariate Gaussian quadrature can be employed straightforward, because
the grids are tensor products of the nodes of the corresponding univariate Gaussian quadratures. For medjym-sized
sparse grids should be preferred. In the case of large nurgbefparameters, Monte Carlo simulations with pseudo
random numbers or quasi Monte Carlo methods are applied. Examples for two random parathetety (vith
independent standardized Gaussian distributions are shown in Fig. 1.

Each technique of the form (13) is called a stochastic collocation [9, 10, 18]. The podes. ., p¥) can be
seen as collocation points. In each method of this type, we have to Kolugial value problems (6) and (8) of the
original systems of DAEs. Thereby, the numerical methods constructed for the deterministic initial value problems of
the DAEs are applied directly. Hence, the stochastic collocation approach is also called the nonintrusive method.

2.4 Stochastic Galerkin Method
Inserting the truncated gPC expansions (12) into the semiexplicit system (6) yields the residuals
r,(t.p) = y™'(t,p)—£[t,y*(t,p),z2)(t,p),p],

r.(t,p) = glt,y™(t,p),z™(t,p),pl.

We want to determine the coefficient functions such that the residuals become small in some sense. The Galerkin
method requires the residuals to be orthogonal with respect to the space of the applied basis polynomials, i.e.,

<ry,z(t7 p)(I)l (p)> =0 (15)

(14)

International Journal for Uncertainty Quantification



Polynomial Chaos for Semiexplicit Differential Algebraic Equations 5

Monte-Carlo (100 nodes) Gauss-Hermite (100 nodes)

10 10
5 5
P2 '13‘"' P2 o
A
P,
gl -5
= O 0 5 0 Yo = 0 5 10
P, Py

FIG. 1. Examples for grids in stochastic collocation techniques with two independent Gaussian random variables.

forl =0,1,...,M and eacht € [ty,;]. Inserting the residuals (14) into the inner products (15), basic calculations
lead to a larger coupled system, where the unknowns represent an approximation of the coefficient functions.

Definition 1. The coupled system of the stochastic Galerkin method corresponding to the semiexplicit systems (6)
reads

vi(t) = <‘1>1(P) -f (t» Zvi(t)@(p), > wi(t)i(p), P)> (16)
i=0 i=0

0 = <¢’1(P) ‘g (tzvi(ﬂq’i(p)’ Zwi(t)‘?i(P)7P>> 17)
i=0 i=0

fort=0,1,..., M.

Although an exact solution of (16) and (17) is not identical to the exact coefficients in (10), we apply the same
symbols for convenience. The coupled system of (16) and (17) represents a semiexplicit system of DAEs again due to
the orthogonality of the basis polynomials.

To obtain initial values for the coupled system of (16) and (17), the original initial values (8) can be expanded in
the gPC. It follows:

vi(to) = (yo(P)®:(P)), Wi(to) = (zo(P)®:(P)) (18)

forl = 0,1,..., M. However, because approximations of the type (12) are used, it gojd9 at the solution of

the coupled system in general. Hence, the algebraic constraints (17) are not satisfied exactly [i.e., the straightforward
choice (18) of the initial values is inconsistent]. Alternatively, just the differential variabl@s) are computed

via (18). We determine the algebraic variabtegt,) by solving the(M + 1) N, algebraic equations (17). Because of

this construction, the initial values are consistent provided that the semiexplicit system of (16) and (17) also exhibits
the index 1.

Solving the coupled system of (16) and (17) is also called the intrusive method. Given the original semiexplicit
systems (6) of some index> 1 for all parameters, we can solve the coupled system of (16) and (17) using the same
numerical methods provided that the coupled system inherits the indfetkhe coupled system exhibits a larger index,
then disadvantages appear within the numerical simulation in comparison to the solution of the original systems.
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3. INDEX ANALYSIS

Let S := supdp) = {p: p(p) # 0} C II C R¥. We assume that a unique solution of the initial value problems
(6) and (8) exists for each € S. Consequently, the Jacobian matéig/0z depends just on the choice pffor
fixedt € [to,t1]. The analysis of the index can be done for easleparately. The index-1 property is achieved for
all ¢ € [to, t1] provided that the criteria hold for eac¢he [to,¢1]. Hence, we consider just a fixeds [to, t1] in the
following.

3.1 Jacobian Matrix in Coupled System

For the algebraic part (17) of the coupled system from the stochastic Galerkin method, we use the abbreviation

M M
G, := <(I)l(p) g (t, Zvi(t)@(p),zwi(t)q)i(p)7P)> =0
i=0 i=0

forl =0,1,..., M. Consequently, the Jacobian matrix, which determines the index-1 property of the coupled system,

reads

G <8Gz> € RIMADN X (M+1)N. (19)
aWk Lk

This matrix consists of the minors

G, og [ M M
= ( ®u(p)®x(p) 9z | > vit)®i(p), Y _wi(t)®i(p),p (20)
i=0 i=0

6Wk

for i,k = 0,1,..., M. The derivation of the formula (20) is based on the assumption that the differentiation and
the probabilistic integration can be interchanged. Thus, we assume that the entries of the Jacobidigiietraxe
continuous in the closed domatfh Let the probability density functiop also be continuous i§. If .S is bounded,

then it follows that the differentiation and the integration can be interchanged. In the case of unbSuifuhtter
integrability conditions are required to guarantee that Eq. (20) holds.

The conditiondet(G) # 0 is equivalent to the index-1 property of the coupled system of (16) and (17). In contrast,
the coupled system exhibits an index at least 2lfafG) = 0. An increase of the index represents a crucial drawback.
Initial value problems of index 1 are well posed with respect to the dependence on perturbed data. Initial value
problems of index larger than 1 are, strictly speaking, ill-posed with respect to the dependence on perturbed data,
because the time derivative of the perturbation enters the problem [5].

Now we ask if the coupled system of (16) and (17) is of index 1 provided that the original systems (6) exhibit the
index 1. As a first minor result, we obtain the following conclusion.

Theorem 1. If the matrixdg/dz does not depend on, z, p and the semiexplicit system (6) is of index 1, then the
coupled system of (16) and (17) inherits the index 1.

Proof. The differential variables and the algebraic variables depend on the parameters. Due to the assumptions, the
matrix 0g/0z does not exhibit a dependence on the parameters at all. Now the @gfii% depends only on time.

It follows 5 9
(#0)210)5E ) = @) 20) 5E.

Since the system of basis polynomials is orthonormal, we obtain

og
= I, =)
g M1 ® 9z
with the identity matrixZ;,, and the Kronecker product of matrices. Hence the matiisxregular if and only if the
matrix 0g/0z is regular. O
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Even if the algebraic constraints in Eq. (6) describedgbincludey, z, p, the matrixdg/0z is independent
of y,z, p in some cases (see the example in Section 4.3). However, the assumption of Theorem 1 is often not given in
practice.

In the following examinations, we will assume one of the following two properties.

Condition 1. The matrixdg/0z corresponding to the semiexplicit system (6) is regular fopadl S = supfp).

Condition 2. The matrixdg/0z corresponding to the semiexplicit system (6) is regular for almosp dile., all
p € R C S for some measurable sBtwhereS\ R has probability zero).

Conditions 1 and 2 represent the index-1 property of the original systems for all parameters and almost all parame-
ters, respectively. In a stochastic collocation method, Condition 1 guarantees that all involved semiexplicit systems (6)
are of index 1. However, systems (6) of larger index may appear if just the Condition 2 is valid.

3.2 Counterexample

Neither Conditions 1 nor 2 is sufficient for the regularity of the madtinf the coupled system of (16) and (17). A
corresponding counterexample exists already in the dase 1, and a single parametér = 1. This counterexample
can be embedded straightforward into examples with> 1 and/or@ > 1.

We define the algebraic part

g(t.y,z,p) =p-z+u(y)

with an arbitrary function: : RV — R. Since it holds

99 _
az_p7

a corresponding system (6) is of index 1 fo# 0 and of index at least 2 fgr = 0. The matrix of the corresponding
coupled system of (16) and (17) consists of the entries

G = [(p®i(p)®x(p))]i.k=0.1,....0-

Because of the orthogonality of the basis polynomials, the métisxtridiagonal. We choose a symmetric probability
densityp(p) around the critical poinp = 0. Condition 2 is always satisfied in this case. For example, we can apply
a Gaussian distribution with mean valpe= 0. However, the diagonal entries gfbecome zero. It follows that the
matrix G has the property

=0 forevenM,
det(9) { #0 foroddM.

We recognize that there is no integkf, such that the coupled system is of index 1 for/ll > M,. Hence, an
improvement of the accuracy of the gPC by increasingloes not omit this behavior.

Moreover, we can choose a uniform distribution corresponding to the doshain[—b, —a] U [a, b] for some
0 < a < b. It follows a symmetric probability density function again. Now the stronger Condition 1 is satisfied.
Yet the matrixG is singular for evenM again. The critical poinbg/9z = p = 0 is not within the support of
the probability density function. However, this critical point is situated in the convex hull of the support. We will
reconsider this quality in Section 3.5.

The above counterexample also indicates that problems with respect to the index may appear in a stochastic
collocation if Condition 2 is satisfied but not Condition 1. We suppose a Gaussian distribution with megnvalue
If we apply a Gauss-Hermite quadrature in the stochastic collocation method, then the criticalpdins a node of
this quadrature scheme in case of an odd number of nodes. It follows that a semiexplicit system (6) of index at least 2
must be solved in the stochastic collocation, although almost all systems exhibit the index 1.
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3.3 Limit Case of Small Variances

In this subsection, we apply a slightly different notation for the semiexplicit system (6) using physical parameters in
the form (3). It follows the system:

y}\(t7p) = f[t7YA(taP)7Z)\(t7P)77\P + rO]

(21)
0 = g[t,ya(t,p),zA(t, P), AP + 1]

depending on somk € R. Similar modification have to be done within the initial values (8). For 0, the sys-
tem (21) becomes deterministic and involves the constant reference parargei&esassume that the index of the
system of DAEs is 1 in case of the reference parametersAFEér0, a random perturbation appears. Using fixed
random variablegp, the variance of the physical input parameters vanishes in the limif\cas®.

The stochastic Galerkin method yields a corresponding coupled system with a ghatiaw, cf. (19). We obtain
the following result in the limit of small variances, where the Kronecker product of matrices and the identity matrix
Ipr41 is involved. A subscript zero refers to the case 0 and not to the initial values &t now.

Theorem 2. Assume that all functions within the matélg /0z are in L?(I1, p) and Lipschitz-continuous with respect
toy, z as well as the parameters. The matfx in the stochastic Galerkin method for the system (21) satisfies

. og
}];ILHO g?\ - I]W+1 ® Oz [t7YO(t7 p)7 ZU(t>p)7rU] (22)
provided that it holds
~ (M) 2 ~ (M) 2
tim [yt p) = volt,p)| ) =0, Jim (|28 (¢, p) ~ zo(t. )| ) =0 (23)

in an arbitrary vector norni - ||.

Proof. In the following, we apply the abbreviation

F(t) = %(f,yo(t7p),Z0(t,p),I‘0).

We rearrange the minors (20) of the matgix to

0G;
Owk

Og

= (@) (p) () + ( up) () { 1038 0,028 (1.0 A+ xi] ~ F(0) | ).

Using (@, P ) = d;, we write the complete matrix in the form
G(t) = In1 @ F(t) + R(t).

Let D = (d;;) € R¥=*N= pe the matrix consisting of the differenc@g/0z — F, which is independent df k. The
Cauchy-Schwarz inequality yields

|<q>l¢),€dij>|g\/<¢>l2q>z>-\/<d§j>s max <<I>;*>~\/<d3j>-

i=0,1,...,M

Without loss of generality, we apply the Euclidean vector ngrri, and the consistent Frobenius matrix ndfmj| ...
The Lipschitz-continuity of the functions itg/9z allows for the conclusion

Zg\lM)

, 2 2
(@2.D)] scM<Hy;“>—yoH2+ ~ 2 2+||Ap§>
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with a constant,; > 0. Using the assumptions of the theorem, it follows:

li D,®,.D =
lin |[(,@¢D)], = 0

foralll,k =0,1,..., M. Thus, we obtain

Jim R(t) =

which implies the Eq. (22). O
We motivate the assumption (23) further. It holds

M M
Iy, p) — yolt, p) | < IyS (D) = yalt, )| + lya(t, p) — yolt, p)|-

The first term on the right-hand side represents the error of the stochastic Galerkin method. This error tends to zero in
the normL2(I1, p) [see Eq. (23)] foM — oo provided that the stochastic Galerkin method is convergent. However,
the constant),, which appears in the proof of Theorem 2, depends\bnHence, we do not achieve a condition
uniformly for all M > M, with some sufficiently largél/y,. The second term on the right-hand side converges to
zero forA — 0 if the solution depends continuously on the physical parameters. The same discussion applies to the
algebraic part.

Concerning the index of the corresponding systems of DAEs, we achieve the following result.

Corollary 1. If the system (21) exhibits index 1 in case of the reference physical parameter= 0), then the
coupled system of (16) and (17) inherits the index 1 for a sufficiently small variance of the input random variables
provided that the assumptions of Theorem 2 are satisfied.

The results of Theorem 2 and Corollary 1 can be generalized straightforward to the case of DAEs in Hessenberg
form [5], with higher index, because the index is characterized by the regularity of specific matrices.

The above conclusions do not contradict the results from Section 3.2. The counterexample requires to choose a
symmetric distribution aroung = 0. Hence, we must seleeg = 0 in this case, where the index-1 assumption is
violated for the corresponding system (21).

The concept applied in this subsection implies only an asymptotic statement. We do not obtain a criterion on the
index for fixedA # 0. Hence, further investigations are performed in the following Sections 3.4 and 3.5.

3.4 Dependence on Sign of Eigenvalues

A criterion for the index-1 property can be obtained by demanding that the signs of the eigenvalues of the Jacobian
matrix do not change. We investigate the scalar cAge= 1) first.

Theorem 3. If it holds dg/0z > 0 for almost allp or dg/0z < 0 for almost allp, then the matri>g from (19) is
positive or negative definite, respectively.

Proof.Letu = (ug,us,...,up) " € RM+Landu # 0. It follows

M

- 0 0 0
u'Gu= Z U <<I)l‘1)kag> < Z wup PPy Z> <<Zul¢z> Z>

1,k=0 1,k=0 1=0

The latter probabilistic integral includes a non-negative polynomial. Because“di and the linear independence of
the basis polynomials, this polynomial is not identical to zero. Thus, the number of zeros of the polynomial is finite.
We obtainu " Gu > 0 for 9g/0z > 0 andu’ Gu < 0 for dg/9z < 0. O

In both cases of the theorem, the coupled system of (16) and (17) inherits the index-1 property from the original
systems (6). Moreover, the property is independent of the choice of the subset of orthogonal basis polynomials. Theo-
rem 3 does not contradict the results of Section 3.2. The counterexample applies a symmetric probability distribution
around the critical poinbg/0z = p = 0. Hence, both positive and negative values appear and the assumptions of
Theorem 3 are not satisfied. The results of the scalar case can be generalized to the multidimensidhabcase
under additional assumptions.
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Theorem 4. Let the matrixdg/0z be real diagonalisable in the form

og

= = UOD(LPUWD) 24)

with a regular matrixU (¢) € RV=*"= and a diagonal matri>D(¢, p), including the entried; (¢,p) fori = 1,..., N,.
If each eigenvalug; is either positive or negative for almost gl then the matrixg from (19) is regular.

Proof. The minors of the matrig can be written as

gTii = <<I>z(p)<1>k(p)g§> = (®:(p)®x(P)U(H)D(t, P)U(t)~") = U(t) (®:(p) 1 (p) D (¢, p)) U(1)
fori,k=0,1,..., M. We obtain the similarity transformation

G(t) = a1 @ UG Ly © U (1) 7).

The matrixG(t) consists of the minors

(G)1k = (P1(p)@r(P)D(t,P)) -

Let B(p) := [®;(p)®x(p)] € RMFD*(M+1) A specific permutation matriR € R(M+1N=-x(M+1)N- independent
of ¢ exists such that the transformed matrix exhibits a block diagonal structure with the minors

[PG(t)Plii = (\i(t, p)B(p))

fori = 1,..., N,. The entries of each diagonal block are the same as in the matrix of the coupled system for the
caseN, = 1 with A; instead o0fdg/0z. Theorem 3 implies that each diagonal block is positive or negative definite
provided that the eigenvalue@s do not change their signs. Because the regularity of a matrix is invariant under

permutations of rows and columns, it followst[G(t)] # 0 and, thusdet[G(t)] # 0. O

The assumptions of Theorem 4 are relatively strong. First, the Jacobian figttix has to be real diagonalizable,
which excludes matrices with complex eigenvalues, for example. Second, the transformation riagieessumed
to be independent of the parametersNevertheless, both properties are given in case of a diagonal mMgfiXz.
Concerning the index-1 property, we obtain the following implication.

Corollary 2. Let the assumptions of Theorem 4 be fulfilled. Moreover, let the magi0z depend continuously on
the parameters. If the domath= supp(p) is path connected, then Condition 1 implies an index of 1 for the coupled
system of (16) and (17).
Proof. The assumption (24) yields
4,08
1

U(t) g(t, p)U(t) = D(t, p).

Hence, the eigenvalues depend continuously on the parameters. Condition 1 implies that each eigenvalue is nonzero
forall p € S. It follows that an eigenvalue does not change its sign. Otherwise, we obtain a path between two points
in .S, where an eigenvalue zero appears on the path. Now, Theorem 4 yields the index-1 property. m]

The counterexample of Section 3.2, where Condition 1 is satisfied, does not involve a path connectedsdomain
Furthermore, a convex domain is always path connected. We will retrieve this property in Section 3.5.

3.5 Criterion from Numerical Range

For a matrixC' € CV*¥ the numerical range

W(C) :={u*Cu:ueC uu=1}cC
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represents a closed and convex set. The spectruthisfa subset of/ (C'). We define the numerical range of our
random Jacobian matrix as

=(08\ _ [ .08 N e _ Jg
W(@Z) .{u 8zu uecC ,uul,pGS}UW(az). (25)

pesS

This set is not necessarily closed or convex witBinHowever, the numerical range (25) is larger than required for
our purposes. We apply an essential numerical range introduced in [19].

Definition 2. Let B(z, ¢) be the ball of radius centered at € C and

Az ¢) == {pES Blz,e) W (gf) #@}.

The essential numerical range of the random Jacobian matrix is

W<gg>—{ eC: / dp>0foralle>0}
Z ZE

In comparison to the numerical range (25), the definition of the essential numerical range yields
og og
C = .
7 () <7 (3)
conv | W a—g C conv W a—g (26)
0z 0z

Theorem 5. If 0 ¢ conv [W (8g/8z)] holds, then the matrig from (19) is regular for an arbitrary choice of an
orthogonal basis.

It follows:

for the convex hull of the sets.

Proof. Theorem 2 in [19] implies that

spectG) C conv {W (gi)}

holds for the spectrum of the gPC matgxIf 0 ¢ conv{ (8g/6z)] is satisfied; then it follow$ ¢ spectG) and
the matrixg is regular. ]

The essential numerical range may be difficult to determine. Applying the inclusion (26), we obtain the following
criterion, which is often easier to verify provided that it is fulfilled by the problem.

Corollary 3. If 0 ¢ conv W (0g/0z)| holds, then the matrig from (19) is regular for an arbitrary choice of an
orthogonal basis.

We consider problems, where the original semiexplicit systems exhibit the index 1foeafl (see Condition 1).
We conclude that zero is not in the spectrundgf/ 0z for all p € S. Yet this condition is not sufficient to guarantee

0¢ W (0g/0z) in the caseV, > 1.
For N, = 1, we obtain more potential for conclusions. The numerical range (25) simplifies to

w(?) :{gg pes} (27)
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Consequently, Condition 1 of the original semiexplicit systems (6) implies the pro@eitﬁ (0g/0z). Because
of Theorem 5, we must consider the convex hull of the numerical range. However, the cobditmomv W (0g/0z)

is equivalent t?dg/0z > n > 0 or dg/dz < n < 0 provided that the partial derivative depends continuously on the
parameters. Because the assumption can be weakened using the essential numerical range, the criterion becomes
dg/0z > 0 ordg/dz < 0. Therefore, we achieve the same conclusion as in Section 3.4.

The assumptions in Theorem 5 and Corollary 3 are relatively strong because neither Conditions 1 nor 2 are
sufficient to guarantee these requirements, in general. Nevertheless, we have to demand this criterion due to the
counterexample in Section 3.2 because it holds

= (99 = (99
0¢W(8z>’ OGCOHV[W <8z>]
in the case of a uniform distribution withisi = [—b, —a] U [a, b] for some0 < a < b, for example.

4. TEST EXAMPLES

We now apply the stochastic collocation techniques as well as the stochastic Galerkin method to four problems.

4.1 Benchmark System

As a benchmark, we employ a simple test example with= N, =1, i.e.,

y'(t) = —(1+op)y(t) +2(t)° 29)
0 = —(1+oop2)y(t) —2(t)?
including two parameters;, p,. It holds
dg _ 2
9 = —3z(t)* <0 forall z(t) #0. (29)

Thus, the index of the system (28) is one for arbitrary parameters provided#hat We specify the consistent initial

values
y(0) =1, 2z(0)=—/1+ oapo. (30)

The exact solution of the initial value problem (28) and (30) reads

y(t) = exp[—(2 + o1p1 + oap2)t],  2(t) = =3/ (1 + o2p2)y(t). (31)

If we arrange distributions of the random parameters with a bounded ddfreia sufficiently small values;, ps,

then the problem satisfies Condition 1. Alternatively, we choose two independent Gaussian random variables with
mean zero and unit variance fpy, po how. Hence, only Condition 2 holds. Both increasing and decreasing exponen-
tial functionsy appear, where the probability of a decreasing process is much higher. Figure 2 shows the maximum
variances fot € [0, 10] of the solution of (28) with respect to the varianegs= o3 in the input parameters, which

are computed by a quadrature using Eq. (31).

Although the problem fullfils Condition 2 only, Theorem 3 guarantees that the coupled system of the stochastic
Galerkin approach exhibits index 1 due to the property (29). Because Gaussian distributions are considered, the gPC
applies the Hermite polynomials. We include all two-variate polynomials up to degree 3 in the truncated series (12),
which results in 10 basis polynomialg/( = 9). On the one hand, a stochastic collocation yields approximations of
the coefficient functions based on a two-dimensional Gauss-Hermite quadrature with a gridrof §izen the other
hand, the stochastic Galerkin method requires to solve the coupled system of (16) and (17), where the probabilistic
integrals in the right-hand sides are discretized using a Gauss-Hermite quadrature on a gritbof sigain. Because
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FIG. 2: Maximum variance fot € [0, 10] of differential componeny (left) and algebraic component(right) for

different variances in the input parameters.

the right-hand side of (28) consists of polynomials, the evaluations of the probabilistic integrals are exact except for

roundoff errors in the stochastic Galerkin technique.

We chooser; = 02 = 0.1 in (28) now. We compute the solutions within the time intervgl ¢1] = [0, 10]. In
each method, the backward differentiation formula (BDF) of second order solves the systems of DAEs [5]. Thereby,

we apply a constant step si2g = 0.02.

Because both time integration and discretization in probability space employ the same schemes and grids, the
number of right-hand side evaluations of the original systems (28) is identical in both stochastic collocation and
stochastic Galerkin method. Only the linear algebra part of the Newton iterations within the implicit time integration
causes a computational overhead in the stochastic Galerkin technique. The computations have been performed in the
software packag®lATLAB. The CPU time of the collocation and the Galerkin method was 4.8 and 22.9, respectively.

We illustrate the results of the stochastic collocation. Figure 3 shows the expected values and the standard deviation
of the stochastic processes. Furthermore, Fig. 4 depicts the coefficient functions of the gPC expansions for higher
degrees. Note that some coefficient functions coincide for the differential compganent

To compare the accuracy of the stochastic collocation and the stochastic Galerkin method, we compute a reference
solution using the exact solutions (31) in a stochastic collocation based on a Monte Carlo simulatién witlt)?
samples. Figure 5 visualizes the maximum differences of the approximations with respect to the reference solution. It
follows that the accuracy of both approaches coincides for all computed coefficient functions. The approximations of
both methods are nearly the same due to the identical discretizations. Although numerical errors of the approximations

0.5¢
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t

8
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0.02¢
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---z

FIG. 3: Expected values (left) and standard deviation (right) for differential companemd algebraic component
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FIG. 5: Maximum differences in reference solution versus st. Galerkin (circles) and reference solution versus st. col-
location (crosses) for coefficient functions of differential component (left) and algebraic component (right)—semilog.
scale.

of probabilistic integrals are avoided within the stochastic Galerkin method, the stochastic collocation method is not
outperformed with respect to accuracy.

Finally, we analyze the speed of convergence of the gPC expansions. For th@bhasis, let 7 (R) be the set of
all indicesi with polynomials®; of degree less or equdl. Using the norm of.%(I1, p), we examine the difference
between partial sums in the style of a Cauchy sequence, i.e.,

Z vi(t)®:(p) — Z vi(t)®i(p)|| = v;(t)? (32)
i€eJ(R) i€J(R-1) 1€J(R)\J(R-1)
depending omR = 1,2, 3, ... for the differential part and the algebraic part of (28). Stochastic collocation including
Gauss-Hermite quadrature yields the coefficient functions. The maximum norms (32§fd@, 10] are shown in
Fig. 6. We recognize an exponential convergence of the gPC expansions, which is typical for smooth functions in
Ceo(10).

4.2 Linear Oscillator

Mathematical modeling of electric circuits typically results in systems of DAESs [2, 3]. We consider an electromagnetic
oscillator consisting of a capacitan€g an inductancé,, and a resistanck in parallel. A particular modeling yields
the linear semiexplicit system
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FIG. 6: Convergence of gPC expansions for differential paiteft) and algebraic part (right)—semilog. scale.

1

u'(t) = a'c (t)
B0 = Tul) (33)
0 = Rwr(t) —u(t)

o
I

10(t) + 10 (t) +1r(t)

for the unknown node voltage and the branch currentg, 1z, 1. The index of the system (33) is equal to one for
R # 0. Physically reasonable parameters@rd., R > 0.

We change the resistanéginto a random variable now. The solution of (33) depends nonlinear on this random
parameter. The index of the coupled system of (16) and (17) from the stochastic Galerkin method can be investigated
via the criterion from Theorem 5. Let the ordering of the unknowng be(u, 1) " andz = (1, 2¢) " . The numerical
range of the corresponding Jacobian matriggsoz follows from

*ag . R 0 w1 _
u = (ur u2) (1 1) (u2) = Rlui|* + wiz + |ug|?

with |ug|? + |uz|? = 1. AssumingR > 1 for each realization of the random variable, it hoRts(u*dg/0zu) > 1/2
for the real part. Thus, the numerical range (25) satisfies

W(gi)g{zEC:Re(z)zé}.

Because this half-plane is closed as well as convex and does not include zero, it follows the regularity of the Jacobian
matrix G by Corollary 3. Hence, the coupled system of (16) and (17) is also of index 1.

We arrange the physical parametérs= 10~° F, L = 1075 H, andR = 10? Q. The corresponding solutions of
initial value problems of the system (33) represent damped oscillations. We apply the random resistance

R(p) := R(1+0.2p)
with a uniformly distributed random variabec [—1, 1]. The initial values
u(0)=0V, 2(0)=01A, 1g(0)=0A, 2c(0)=-01A (34)

are a consistent choice for arbitrary parameters. Numerical simulations are performed within the time[tpterat
[0s, 10~ °s]. The BDF scheme of second order is used for the integrations with equidistant stes siz€0—s.
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The gPC expansions are based on the Legendre polynomials now. We include all polynomials up to degree 5 in
the truncated series (12) (i.6\/ = 5). The stochastic collocation technique applies a Gauss-Legendre quadrature
with K = 4 nodes. Because the system of DAEs (33) is linear, the right-hand side of the coupled system of (16) and
(17) is also linear in the stochastic Galerkin method. The matrix of the right-hand side consists of time-independent
probabilistic integrals (4), which are calculated just once before starting the time integration. Moreover, a Gauss-
Legendre quadrature yields the exact probabilistic integrals except for roundoff errors.

The expected values and standard deviations of the solution resulting from the stochastic Galerkin method are
illustrated in Figs. 7 and 8, respectively. Because the solutions of the system (33) represent damped oscillations, the
variance decreases in time.

The corresponding computational effort of both methods is nearly the same with CPU times of 0.08 for stochastic
collocation and 0.06 for stochastic Galerkin. For a comparison of accuracy, we compute a reference solution based on
stochastic collocation using the midpoint rule with= 103 equidistant nodes. The corresponding time integration
applies the step sizAt = 0.5 x 10~? s. The resulting errors are shown in Fig. 9. The stochastic Galerkin method
achieves a better accuracy for coefficients of a high degree. Increasing the accuracy of the stochastic collocation
requires more nodes in the Gaussian quadrature, which causes a higher computational effort. Hence, the stochastic

Galerkin technique is more efficient in this test example.
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FIG. 7: Expected values (left) and standard deviation (right) of node voltdagdinear oscillator.
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FIG. 8: Expected values (left) and standard deviation (right) of branch currents in linear oscillator.

International Journal for Uncertainty Quantification



Polynomial Chaos for Semiexplicit Differential Algebraic Equations 17

U L
107 ‘ ‘ ‘ 107
]
-4 B % -4
107 N ] 10 y
2 & © 2 ®
[} X @) x
-6| 0 o -6|
10 10 = 5
X
o o
-8 : : : -8 : : :
10 5 5 7 6 10 0 2 4 6
components components
1c 1R
107 ‘ ‘ ‘ 107
4 -4
10 - 10
g ® X g & X
[} [J]
-6| X | -6/ & X
10 - o 10
X B x o
O 9 e}
10— : ‘ 10— . °
0 2 4 6 0 2 4 6
components components

FIG. 9: Maximum differences in reference solution versus st. Galerkin (circles) and reference solution versus st. col-
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4.3 Nonlinear Oscillator

Now we consider a nonlinear electric network, where a nonlinear resistance replaces the linear resistance in the
previous example (33). It follows the system of DAEs:

W) = Ziol)
L) = Jul)

(39)

0 = r(t) — (Go — Go)Up tanh {uéto)] — Gooult)

0 = wc(t)+e(t) +er(t).
The index of the semiexplicit system (35) is always equal to 1. We arrange the physical parameters
C=10""F, L=10"°H, Uy=1V, Gy=—-0.1AN, G =0.25 AV.

The solutions of initial value problems tend to a periodic limit cycle. Therefore this example has been applied in [13]
for an uncertainty quantification of periodic boundary value problems. Alternatively, we consider the initial value
problem (34), which represents a consistent choice for arbitrary parameters.

In a stochastic modeling, we replace the two deterministic param@tarslG ., by the random parameters

C(p1) == C(1+0.01p1), Geo(p2) = Goo(1+0.01p2)
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with independent random variablgs, p, both uniformly distributed in the intervél-1, 1]. Hence, it holdsﬁ, Goo >
0 for all realizations of the random variables, which is necessary to achieve physically reasonable systems (35). Both
parameterg’ andG ., influence the frequency of the corresponding solutions.

In the gPC methods, we use all two-variate basis polynomials up to degree 3 in the truncated series (12) (i.e.,
M =9). Although the algebraic part of (35) includes a random parameter, this example satisfies the assumptions
of Theorem 1. Hence, the coupled system of (16) and (17) inherits the index-1 property in the stochastic Galerkin
approach. Gauss-Legendre quadrature yields approximations of probabilistic integrals using a grid of gine
both stochastic collocation and stochastic Galerkin techniques. Numerical simulations are performed within the time
interval [to, t;] = [0 s,10~% § again. Time integration applies the BDF scheme of second order with constant step
sizeAt = 1079 s.

Figures 10 and 11 illustrate the expected values and standard deviations of the components of the random process,
which are reconstructed by the solutions from the stochastic collocation method. Since solutions of the original sys-
tem (35) corresponding to different parameters exhibit different frequencies, the variances increase in time. However,
the variance does not tend to infinity but to a periodic state, indicating high uncertainties. Nevertheless, the order of the
truncated gPC expansions (12) must be increased for larger times to guarantee sufficiently accurate approximations
(i.e., larger valued/ must be applied).

Using the software package MATLAB, the CPU times of the stochastic collocation and the stochastic Galerkin
method were 5.4 and 17.5, respectively. To compare the accuracy, we compute a reference solution via stochastic
collocation, including a quadrature with midpoint rule on a grid of i@ x 100 and time integration with step size
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FIG. 10: Expected values (left) and standard deviation (right) of node voliagenonlinear oscillator.
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FIG. 11: Expected values (left) and standard deviation (right) of branch currents in nonlinear oscillator.
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At = 0.5 x 1077 s. Figure 12 shows the maximum differences of the approximations with respect to the reference
solution. We observe a good agreement of the achieved accuracies within the stochastic collocation and the stochas-
tic Galerkin technique, which is caused by the application of the same discretization schemes again. However, the
computational effort of the stochastic Galerkin method is significantly larger due to the linear algebra part.

4.4 Transistor Modulator

Finally, we consider the electric circuit of a transistor modulator, which was introduced in [20]. A mathematical
modeling yields a nonlinear semiexplicit system of DAEs for three node voltages, u3 and a branch current
ie.,

up = % <R1Lu1 — 1 — Ip{exp[6(u1 — Uee)] — 1} + ol [exp(dug) — 1])
, 1
T = EU1
0 = —Io{exp[d(us + Uinz)] — 1} + ado {exp[8(Uinz — Uee)] — 1} — I [exp(dus) — 1] (36)

+oudp {exp[d(u1 — Uee)] — 1} — I {exp[d(us + Uin1 — Uop)] — 1} + &Ly [exp(dug) — 1]

1
0 = —1I [exp(5u2) — 1] + ol {exp[é(ug + Uin1 — Uop)] — 1} + Ri [Uss + Uin1 — Uop - UQ] .
B
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FIG. 12: Maximum differences in reference solution versus st. Galerkin (circles) and reference solution versus st. col-
location (crosses) for coefficient functions of gPC expansion for the solution of the nonlinear oscillator—semilog.

scale.
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The node voltage, represents the output signal. The index of the system (36) is one in case of physically reasonable
parameters. We apply the constants

Ue =Uss =10V, Uy, =5V, R, =2 x10° Q, Rp =15 x 10° Q,
C=5x10"""F L=2x103H, [, =10"8A, 5=40 V!, «=0.99.

The input signals are chosen as harmonic oscillations

2w 2w
in1(t) = A o == ) in2(t) = A S| =t
U, 1() 1COb<T1t) Uz() QCOb<T2)
with amplitudes4d; =4 V, 4, = 0.1 V and periods; = 107% 5,7, = 107° s.
Now we replace the operating voltage by a random parameter

Uop(p) := Uop(1 + 0.1p)

with a uniformly distributed random variabjec [—1, 1]. This random parameter appears in the algebraic part of (36)
only. For the stochastic Galerkin method, the index-1 property does not follow directly from the sufficient criteria in
Section 3 due to the sophisticated structure of the right-hand side of the system (36). Nevertheless, the regularity of
the corresponding Jacobian matghcan be confirmed during a time integration by observing the condition number.

In the gPC expansions, we apply the Legendre polynomials up to degree 5. An initial value problem is considered
inthe time intervalty, t;] = [0 s,2x10~* §], where a constant choice of the initial condition is used. The BDF method
of second order discretizes the involved DAEs with an equidistant step\size 1.25 x 10~2 s. In the stochastic
collocation as well as the stochastic Galerkin approach, we approximate the probabilistic integrals by Gauss-Legendre
guadrature on a grid of sizex 6.

Both stochastic collocation and stochastic Galerkin method produce appropriate approximations. The computa-
tional times of the stochastic collocation and the stochastic Galerkin method were 16.5 and 32.6, respectively. Each
time step of the Galerkin technique is about twice as expensive as a step of the stochastic collocation method. Fig-
ures 13 and 14 depict the expected values and the standard deviations of the random processes obtained from the
stochastic collocation technique.

Again, we calculate a reference solution by the stochastic collocation, including the midpoint rul€ with00
equidistant nodes. The time integration applies half the step size as in the other simulations. The corresponding
maximum differences between the solutions of the different methods are illustrated by Fig. 15. It follows that the
accuracy coincides in the stochastic collocation and the stochastic Galerkin technique. Thus, the stochastic collocation
is also more efficient for this test example.
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FIG. 13: Expected values (left) and standard deviation (right) of node voltages in transistor modulator.
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5. CONCLUSIONS

The approach of the generalized polynomial chaos has been applied to semiexplicit systems of differential algebraic
equations with index 1, which include random parameters. Either a stochastic collocation technique or a stochastic
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Galerkin method can be used to compute the unknown coefficient functions of the expansions. The presented results
indicate that a stochastic collocation should be preferred over the stochastic Galerkin approach. First, the theoretical
investigations show that the index of the larger coupled system from the Galerkin method can increase in comparison
to the original systems of index 1. Several sufficient conditions have been proven, which guarantee the index-1 prop-
erty of the coupled system. Second, the numerical simulations illustrate that the Galerkin method requires a larger
computational work due to the linear algebra part, whereas the accuracy is nearly the same in both techniques. An
exception is given by linear time-invariant systems of differential algebraic equations, where probabilistic integrals
must be calculated just once prior to the time integration in the stochastic Galerkin technique. A numerical simulation
confirmed that the stochastic Galerkin method is more efficient in this case. For nonlinear problems, the differences
with respect to the efficiency may also become small if the right-hand sides of the original systems are expensive to
evaluate. In this case, the computational effort of the linear algebra part is negligible. We expect a similar behavior in
both the theoretical properties and the numerical simulations for general systems of differential algebraic equations
with a possibly higher index.
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