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In this paper we address the problem of uncertainty management for robust design, and verification of large dynamic
networks whose performance is affected by an equally large number of uncertain parameters. Many such networks
(e.g., power, thermal, and communication networks) are often composed of weakly interacting subnetworks. We propose
intrusive and nonintrusive iterative schemes that exploit such weak interconnections to overcome the dimensionality
curse associated with traditional uncertainty quantification methods (e.g., generalized polynomial chaos, probabilistic
collocation) and accelerate uncertainty propagation in systems with a large number of uncertain parameters. This
approach relies on integrating graph theoretic methods and waveform relaxation with generalized polynomial chaos,
and probabilistic collocation, rendering these techniques scalable. We introduce an approximate Galerkin projection
that based on the results of graph decomposition computes “strong” and “weak” influence of parameters on states.
An appropriate order of expansion, in terms of the parameters, is then selected for the various states. We analyze
convergence properties of this scheme and illustrate it in several examples.
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1. INTRODUCTION

The issue of management of uncertainty for robust system operation is of interest in a large family of complex net-
worked systems. Examples include power, thermal, and communication networks which arise in several instances such
as more electric aircrafts, integrated building systems, and sensor networks. Such systems typically involve a large
number of heterogeneous, connected components, whose dynamics is affected by possibly an equally large number
of uncertain parameters and disturbances.

Uncertainty quantification (UQ) methods provide means of calculating probability distribution of system out-
puts, given the probability distribution of input parameters. Outputs of interest could include, for example, latency in
communication network, power quality and stability of power networks, and energy usage in thermal networks. The
standard UQ methods such as Monte Carlo (MC) [1] exhibit poor convergence rates whereas others such as quasi
Monte Carlo (QMC) [2, 3], generalized polynomial chaos (gPC) [4], and the associated probabilistic collocation
method (PCM) [5] suffer from the curse of dimensionality (in parameter space), and become practically infeasible
when applied to a network as a whole. Improving these techniques to alleviate the curse of dimensionality is an active
area of current research (see [6] and references therein): notable methods include the sparse-grid collocation method
[7, 8] and analysis of variance (ANOVA) decomposition [9] for sensitivity analysis and dimensional reduction of the
uncertain parametric space. However, none of such extension exploits the underlying structure and dynamics of the
networked systems. In fact, many networks of interest (e.g., power, thermal, and communication networks) are often
composed of weakly interacting subsystems. As a result, it is plausible to simplify and accelerate the simulation, anal-
ysis, and uncertainty propagation in such systems by suitably decomposing them. For example, authors in [10, 11]
used graph decomposition to facilitate stability and robustness analysis of large-scale interconnected dynamical sys-
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tems. Mezic et al. [12] used graph decomposition in conjunction with Perron Frobenius operator theory to simplify
the invariant measure computation and uncertainty quantification, for a particular class of networks. While these ap-
proaches exploit the underlying structure of the system, they do not take advantage of the weakly coupled dynamics
of the subsystems.

In this paper, we propose an iterative UQ approach that exploits the weak interactions among subsystems in a
networked system to overcome the dimensionality curse associated with traditional UQ methods. We refer to this
approach as probabilistic waveform relaxation (PWR), and propose both intrusive and nonintrusive forms of PWR.
PWR relies on integrating graph decomposition techniques and waveform relaxation scheme, with gPC and PCM.
Graph decomposition to identify weakly interacting subsystems can be realized by spectral graph theoretic techniques
[13, 14]. Waveform relaxation [15] (WR), a parallelizable iterative method exploits this decomposition and evolves
each subsystem forward in time independently but coupled with the other subsystems through their solutions from
the previous iteration. In the intrusive PWR, the subsystems obtained from decomposing the original system are
used to impose a decomposition on system obtained by Galerkin projection based on the gPC expansion. Further,
the weak interactions are used to discard terms which are expected to be insignificant in the gPC expansion, leading
to what we call an approximate Galerkin projected (AGP) system. We then propose to apply WR relaxation on the
decomposed AGP system to accelerate the UQ computation. In the nonintrusive form of PWR, rather than deriving the
AGP system, one works directly with subsystems obtained from decomposing the original system. At each waveform
relaxation iteration we propose to apply PCM at the subsystem level, and use gPC to propagate the uncertainty among
the subsystems. Bevause UQ methods are applied to relatively simpler subsystems which typically involve a few
parameters, this renders a scalable nonintrusive iterative approach to UQ. We prove convergence of the PWR approach
under very general conditions. Note that spectral graph decomposition can be done completely in a distributed fashion
using a recently developed wave equation-based clustering method [16]. Moreover, one can further exploit timescale
separation in the system to accelerate WR using an adaptive form of WR [17]. PWR when combined with wave
equation-based distributed clustering and adaptive WR can lead to a highly scalable and computationally efficient
approach to UQ in complex networks. Note that to the best of the authors’ knowledge, it is the first attempt to extend
polynomial chaos-based methods to parallel environments such that every step in the process, from clustering to the
simulations, is completely decentralized.

This paper is organized in six sections. In Section 2 we give the mathematical preliminaries for setting up the
UQ problem for networked dynamical systems, and present an overview of gPC and PCM techniques. In Section 3
we discuss graph decomposition and waveform relaxation methods, which form basic ingredients of PWR. Here we
also describe adaptive WR and wave equation based distributed graph decomposition techniques. We introduce the
intrusive and nonintrusive PWR in Section 4 through a simple example, and then describe these methods in a more
general setting. We also prove convergence of PWR, and analyze the scalability of the method. In Section 5 we
illustrate the intrusive and nonintrusive PWR in several examples. Finally, in Section 6 we summarize the main results
of this paper, and present some future research directions.

2. UNCERTAINTY QUANTIFICATION IN NETWORKED SYSTEMS

Consider a nonlinear system described by a system of random differential equation

ẋ1= f1(x, ξ1, t),
...

ẋn= fn(x, ξn, t),
(1)

wheref = (f1, f2, ..., fn) ∈ Rn is a smooth vector field,x = (x1, x2, ..., xn) ∈ Rn are state variables,ξi ∈
Rpi is a vector of random variables affecting theith system. Letξ = (ξT

1 , ..., ξT
n )T ∈ Rp be thep =

∑n
i=1 pi

dimensional random vector of uncertain parameters affecting the complete system. The solution to the initial value
problemx(t0) = x0 will be denoted byx(t; ξ), where for brevity we have suppressed the dependence of solution on
initial time t0 and initial conditionx0. We shall assume that the system (1) is Lipschitz

||f(x1, ξ, t)− f(x2, ξ, t)|| ≤ L(ξ)||x1 − x2||, (2)
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where the Lipschitz constantL(ξ) depends on the random parameter vector and|| · || is a Euclidean norm. We will
assume thatsupξ∈Rp L(ξ) = L < ∞.

Let us also define a set of quantities

z = (z1, z2, ..., zd) = G(x) = [g1(x), ..., gd(x)], (3)

as observables or quantities of interests. The goal is to numerically establish the effect of input uncertainty ofξ on
output observablesz. Naturally, the solution for system (1) and the observables (3) are functions of the same set of
random variablesξ, i.e.,

x = x(t; ξ), z = z(t, ξ) = G(x). (4)

In what follows we will adopt a probabilistic framework and modelξ = (ξ1, ξ2, ..., ξp) as ap-variate random vec-
tor with independent components in the probability space(Ω,A,P), whose event space isΩ and is equipped withσ-
algebraA and probability measureP. Throughout this paper, we will assume that the parametersΣ = {ξ1, ξ2, ..., ξp}
are mutually independent of each other. Letρi : Γi → R+ be the probability density of the random variable
ξi(ω), with Γi = ξi(Ω) ⊂ R being its image. Then, the joint probability density of any random parameter sub-
setΛ = {ξi1 , ξi2 , ..., ξim

} ⊂ Σ is given by

ρΛ(ξi1 , ..., ξim) =
|Λ|∏

j=1

ρij (ξij ), ∀(ξi1 , ..., ξim) ∈ ΓΛ, (5)

with a support

ΓΛ =
|Λ|∏

j=1

Γij ⊂ R|Λ|, (6)

where| · | denotes the cardinality of the set. Without loss of generality we will assume thatΓi = [−1 1], i = 1, ..., p.

Remark 2.1. While throughout the paper we will work with ordinary differential equation (ODE) (1) with parametric
uncertainty, the PWR framework developed in this paper can be naturally extended to deal with (1) system of dif-
ferential algebraic equations (DAEs), and (2) time-varying uncertainty. Both these extensions are illustrated through
examples in Section 5.

2.1 Uncertainty Quantification Methods

In this section, we describe two inter-related UQ approaches: generalized polynomial chaos and the probabilistic
collocation method. The gPC is an intrusive approach which requires explicit access to system equations (1), while
PCM is a related sampling-based nonintrusive [and hence treats the system (1) as a black box] way of implementing
gPC.

2.1.1 Generalized Polynomial Chaos

In the finite dimensional random spaceΓΣ defined in (6), the gPC expansion seeks to approximate a random pro-
cess via orthogonal polynomials of random variables. Let us define one-dimensional orthogonal polynomial space
associated with each random variableξk, k = 1, ..., p as

W k,dk ≡ {v : Γk → R : v ∈ span{ψi(ξk)}dk
i=0}, (7)

where{ψi(ξk)}dk
i=0 denotes the orthonormal polynomial basis from the so-called Wiener-Askey polynomial chaos

[4]. The Askey scheme of polynomials contains various classes of orthogonal polynomials such that their associated
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weighting functions coincide with probability density function of the underlying random variables. The corresponding
P -variate orthogonal polynomial space inΓΣ is defined as

WΣ,P ≡
⊗

|d|∈P
W i,di , (8)

where the tensor product is over all possible combinations of the multi-indexd = (d1, d2, ..., d|Σ|) ∈ N|Σ| in setP,

P = {d ∈ N|Σ| : |d| =
|Σ|∑

i=1

di ≤ P and di ≤ Pi} (9)

andP = (P1, ..., P|Σ|)T ∈ N|Σ| is a vector of integers which restricts the maximum order of expansion of theith
variableξi to bePi, andP = maxi Pi. Thus,WΣ,P is the space ofN -variate orthonormal polynomials of total degree
at mostP with additional constraints on individual degrees of polynomials, and its basis functionsΨΣ,P

i (ξ) satisfy
∫

ΓΣ

ΨΣ,P
i (ξ)ΨΣ,P

j (ξ)ρΣ(ξ)dξ = δij , (10)

for all 1 ≤ i, j ≤ NΣ = dim(WΣ,P ). Note that in standard gPC all expansion orders are taken to be identical, i.e.,
P1, = P2... = P|Σ| = P , so that dim(WΣ,p) = (P + |Σ|)!/P !|Σ|!. We will however take advantage of an adaptive
expansion, a notion which will be fully developed in Section 4.3.

The major advantage of applying the gPC is that a random differential equation can be transformed into a system
of deterministic equations. A typical approach is to employ a stochastic Galerkin projection, in which all the state
variables are expanded in polynomial chaos basis with corresponding modal coefficients [aik(t)], as

xk(t, ξ) ≈ xΣ,P
k (t, ξ) =

NΣ∑

i=1

aik(t)ΨΣ,P
i (ξ), k = 1, ..., n, (11)

where the sum has been truncated to a finite order. Substituting these expansions in Eq. (1), and using the orthogonality
property of polynomial chaos (10), we obtain fork = 1, ..., n, j = 1, ..., NΣ,

ȧjk = Fjk(a, t), (12)

a system of deterministic ODEs describing the evolution of the modal coefficients, with initial conditions

ajk(0) =
∫

ΓΣ

xk(0, ξ)ΨΣ,P
j (ξ)ρΣ(ξ)dξ, (13)

anda = (a11, ..., aNΣ1, ..., a1n, ..., aNΣn)T ,

Fjk(a, t) =
∫

ΓΣ

fk[xΣ,P (ξ, t), ξk, t]ΨΣ,P
j (ξ)ρΣ(ξ)dξ, (14)

with xΣ,P (t, ξ) = [xΣ,P
1 (t, ξ), ..., xΣ,P

n (t, ξ)]. This system can be solved with any numerical method dealing with
initial-value problems, e.g., the Runge-Kutta method. Similarly, the observable can be expanded in the gPC basis as

zk(t, ξ) ≈ zΣ,P
k (t, ξ) =

NΣ∑

i=1

bik(t)ΨΣ,P
i (ξ), (15)

where

bjk(t) =
∫

ΓΣ

zΣ,P
k (ξ)ΨΣ,P

j (ξ)ρΣ(ξ)dξ (16)

International Journal for Uncertainty Quantification



Scalable UQ 417

with k = 1, ..., d. Hence, once the solution to the system (12) has been obtained, the coefficientsbjk can be approxi-
mated as

bjk ≈
∫

ΓΣ

gk[xΣ,P (t, ξ)]ΨΣ,P
j (ξ)ρΣ(ξ)dξ. (17)

Such Galerkin procedures have been used extensively in the literature. In many instances Galerkin projection may
not be possible due to the unavailability of direct access to the system of equations (1). In many other instances
such intrusive methods are not feasible even in cases when the system equations are available, because of the cost of
deriving and implementing a Galerkin system within available computational tools. To circumvent this difficulty, the
probabilistic collocation method has been developed.

2.1.2 Probabilistic Collocation Method

PCM is a nonintrusive approach to solving stochastic random processes with the gPC. Instead of projecting each state
variable onto the polynomial chaos basis, the collocation approach evaluates the integrals of form (16) by evaluating
the integrand at the roots of the appropriate basis polynomials [5]. Given a one-dimensional (1D) probability density
functionρj(ξj), the PCM based on Gauss quadrature rule approximates an integral of a functiong with respect to
densityρj(ξj) as follows:

∫ 1

−1

g(ξj)ρ(ξj)dξj ≈ Ulj [g] =

mlj∑

k=1

wljkg(rljk), j = 1, ..., p, (18)

where,rljk ∈ Clj is the set of Gauss collocation points with associated weightswljk, lj is the accuracy level of
quadrature formula, andmlj is the number of quadrature points corresponding to this accuracy level. Building on the
1D quadrature formula, the full grid PCM leads to following cubature rule:

∫ 1

−1

∫ 1

−1

...

∫ 1

−1

g(ξ1, ..., ξp)ρΣ(ξ)dξ ≈ I(l1, ..., lp, p)[g] = (Ul1 ⊗ Ul2 ...Ulp)[g] =
ml1∑

j1=1

...

mlp∑

jp=1

wljg(rlj), (19)

whererlj = (rl1j1 , ..., rlpjp), with l = (l1, ..., lp), andj = (j1, ..., jp) andwlj = wl1j1 ...wlnjn . To computeI(l, p)
we need to evaluate the function on the full collocation gridC(l, p) which is given by the tensor product of 1D grids

C(l, p) = Cl1 × ...× Clp , (20)

with the total number of collocation points beingQ =
∏p

j=1 mlj . In this framework, therefore, for anyt the approxi-
mations to the model coefficientsajk(t) [see Eq. (11)] andbjk(t) [see Eq. (15)] can be obtained as

ajk(t) =
∫

ΓΣ

xΣ,P
k (t, ξ)ΨΣ,P

j (ξ)ρΣ(ξ)dξ ≈
ml1∑

j1=1

...

mlp∑

jp=1

wljΨ
Σ,P
j (rlj)xk(t, rlj), (21)

with a similar expression forbjk(t). Note that to compute the summations arising in (21), the solutionx(t, rlj) of
the system (1) is required for each collocation pointrlj in the full collocation gridC(l, p). Thus, the simplicity of
collocation framework only requires repeated runs of deterministic solvers, without explicitly requiring the projection
step in gPC.

If we choose the same order of collocation points in each dimension, i.e.,ml1 = ml2 , ... = mlp ≡ l, the
total number of points isQ = lp, and the computational cost increases rather steeply with the number of uncertain
parametersp. Hence, for large systems (n À 1) with a large number of uncertain parameters (p À 1), PCM becomes
computationally intensive. As discussed in the Introduction, alleviating this curse of dimensionality is an active area of
current research [6]. In this paper we propose a new uncertainty quantification approach which exploits the underlying
network structure and dynamics to overcome the dimensionality curse associated with PCM. The key methodologies
for accomplishing this are the graph decomposition and waveform relaxation, which are discussed in subsequent
sections.
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3. GRAPH DECOMPOSITION AND WAVEFORM RELAXATION

3.1 Waveform Relaxation

In this section we describe the basic mathematical concept of the waveform relaxation (WR) method for iteratively
solving the system of differential equations of the form (1). For purposes of discussion here, we fix the parameter
valuesξ in the system (1) to fixed mean values. The general structure of a WR algorithm for analyzing system (1)
over a given time interval[0, T ] consists of two major steps: theassignment partitioning processand therelaxation
process[15, 18].

Assignment-partitioning process: LetN = {1, ..., n} be the set of state indices, andCi, i = 1, ..., m be a partition
of N such that

N =
m⋃

i=1

Ci, Ci

⋂
Cj = ∅,∀i 6= j. (22)

We shall represent byD : N → M ≡ {1, 2, ...,m} a map which assigns the state index to its partition index,
i.e.,D(i) = j, wherej is such thati ∈ Cj . Without loss of generality, we can rewrite Eq. (1) after the assignment-
partitioning process as

ẏ1 = F1(y1,d1(t), Λ1, t)
...

ẏm= Fm(ym,dm(t), Λm, t),
(23)

where, for eachi = 1, ..., m,
Fi ≡ (fji

1
, ..., fji

Mi
)T , (24)

yi ≡ (xji
1
, ..., xji

Mi
)T , (25)

with initial condition
y0i ≡ (x0ji

1
, ..., x0ji

Mi
)T , (26)

and
Λi ≡ (ξji

1
, ..., ξji

Mi
)T , (27)

are the subvectors assigned to theith partitioned subsystem, such thatji
k ∈ Ci, k = 1, ..., Mi = |Ci|, and

di(t) ≡ (yT
ji

, ...,yT
jNi

)T , (28)

is a decoupling vector, withjk ∈ Mi andk = 1, ..., Ni = |Mi|. Here,Mi is the set of indices of the partitions (or
subsystems) with which theith partition (or subsystem) interacts, and is given by

Ni = M\=[D(N c
i )], (29)

whereN c
i = {j ∈ N : ∂Fi/∂xj = 0} and=(·) denotes the image of the mapD.

Relaxation process: The relaxation process is an iterative procedure, with the following steps:

Step 1: (Initialization of the relaxation process) SetI = 1 and guess an initial waveform{y0
i (t) : t ∈ [0 T ]}

such thaty0
i (0) = y0i, i = 1, ..., m.

Step 2: (Analyzing the decomposed system at theIth WR iteration) For eachi = 1, ..., m, set

dI
i (t) = [(yI−1

ji
)T , ..., (yI−1

jNi
)T ]T , (30)

and solve the subsystem
ẏI

i = Fi[yI
i ,dI

i (t), Λi, t], (31)

over the interval[0, Ts] with initial conditionyI
i (0) = y0i, to obtain{yI(t) : t ∈ [0, Ts]}.
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Step 3: SetI = I + 1 and go to step 2 until satisfactory convergence is achieved.

Note that unlike traditional parallel DAE solvers, WR is agnostic to the numerical scheme [15, 19]. One can partition
the original system based on timescales and then use appropriate numerical schemes (with different time steps) on
various subsystems. This is particularly attractive for stiff dynamic systems [15]. Moreover, competing DAE solvers
require communication at every function evaluation; this can be expensive for implicit methods since function eval-
uations are required for every Newton iteration [19]. WR requires communication only at the end of the simulation
for the entire time window. The overall data communicated in WR also tend to be smaller since one is not forced to
exchange information related to every function evaluation [20]. Since sending larger messages less frequently is more
efficient from a communication point of view [21], the communication overhead of WR is significantly lower [19].
For a comparison of WR to competing approaches, see [15, 19, 20]. WR has been used in applications related to
neural modeling [19], communication networks [17], and power grids [22]. Note that co-simulation [23] strategies for
simulating heterogeneous systems, and utilizing different solvers for various subsystems, also frequently employ WR.

The general conditions for convergence of WR for a system of differential algebraic equations (DAEs) can be
found in [17, 18]. Here, we recall a result from [17] specializing it for a system of differential equations.

Proposition 3.1. Convergence of WR for ODEs (see [18] for proof): Given that the system (1) is Lipschitz (condi-
tion 2), then for any initial piecewise continuous waveform{y0

i (t) : t ∈ [0, Ts]} such thaty0
i (0) = y0i [see definition

(26)], i = 1, ...,m, the WR algorithm converges to the solution of (1) with initial conditionx0.

A more intuitive analysis of error at each waveform iteration is described in [17]. Letȳ be the exact solution of
the differential equation (23) and defineEI to be the error of theIth iterate, that is

EI(t) = yI(t)− ȳ(t). (32)

As shown in [17], the error|EI | on the interval[0, T ] is bounded as follows:

|EI(t)| ≤ CIηIT I

I!
|E0(t)|, (33)

with C = eµT . HereC andη are related to the Lipschitz constants of the waveform relaxation operator [17]. Note
here that theI! in the denominator dominates the error. Thus, with enough iterations one can make the error fall
below any desired threshold. It is also evident from Eq. (33) that the error of standard waveform relaxation crucially
depends onT . The longer the time interval, the greater is the number of iterations needed to bound the error below a
desired tolerance. Based on this observation, a novel “adaptive” version of waveform relaxation has been developed
in [17], which we refer to as adaptive waveform relaxation (AWR). The idea here is to perform waveform relaxation
in “windows” of time that are picked so as to reduceI in Eq. (33). Specifically, one can pick small time intervals for
computation when the solution to (1) changes significantly [implyingE0(t) is large] and pick large intervals when the
solution changes little [consequentlyE0(t) is small]. The solution from one time interval is extrapolated to the next
using a standard extrapolation formula [24] and the initial error is estimated using

ẼI+1,0(t) =
φ(l)[xI+1(ξ), xI+1(ξ)]

(l + 1)!
ω(t), (34)

where
ω(t) = (t− t0)(t− t1) . . . (t− tl). (35)

Heret0, t1, . . . , tl are points through which one passes the extrapolating polynomial [17]. Note thatφ(l) = dlφ/dtl

is thelth derivative of the waveform relaxation operatorφ with respect tot (see [17, 24]). We point out to the reader
that upper bounds on the window size can be placed using the memory restrictions at the various computer processors.
Also, at a particular processor, one does not need to store the waveforms of all the state variables. At a processor, one
only needs to store the waveforms of state variables that influence the ones that are being computed locally.

The algorithm to compute the length of the time windows is as follows:
Adaptive waveform relaxation: To compute the time interval for∆TI+1, execute the following steps:
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1. Set∆TI+1 = 2∆TI andδ = (1/20)∆TI .

2. EvaluateẼI+1,0(TI + ∆TI+1) using Eq. (34) to estimate||EI+1,0|| and compute||ÊI+1,r|| with the aid of the
following equation:

||ÊI+1,r|| =
(
eµ∆TI+1η∆TI+1

)r

r!
||EI+1,0||. (36)

3. If ||ÊI+1,r|| > ε and∆TI+1 > (1/2)∆TI , set∆TI+1 = ∆TI+1 − δ and repeat step 2.

We define the minimal window length to be∆TI+1 = (1/50)T . The above procedure gives a sequence of time
intervals[0, T1], [T1, T2], . . . , [Tν−1, Tν], whereTν = T , on which WR is performed (as described in relaxation
process) with an initial “guess” waveform provided by an extrapolation of the solution on the previous interval [17].
AWR is found to accelerate simulations by orders of magnitude over traditional WR [17]. In this work, we propose
to use AWR for simulating the set of differential equations that arise from intrusive polynomial chaos. As mentioned
before, the curse of dimensionality gives rise to a combinatorial number of equations [4] making AWR particularly
attractive.

While the convergence of WR or AWR is guaranteed irrespective of how the system is decomposed in the
assignment-partitioning step, the rate of convergence depends on the decomposition [17]. For a given nonlinear sys-
tem, determining a decomposition that leads to an optimal rate of AWR convergence is an NP-complete problem [17].
Ideally, to minimize the number of iterations required for convergence, one would like to place strongly interacting
equations/variables on a single processor, with weak interactions between the variables or equations on different pro-
cessors. In Eq. (33),η is a measure of the “strength” of connection between clusters. The smallerη is, the weaker are
the interactions and consequently, fewer are the required iterations for convergence. In fact, once the system has been
decomposed, by boundingη one can estimate the computational effort required by AWR, thus aiding in the decision
of using this approach over sampling based methods.

We show in [17] that spectral clustering [13] along with horizontal vertical decomposition [12] is a good heuristic
for decomposing systems for fast convergence in WR and AWR. For a comparison of spectral clustering with other
approaches see [17]. For this task, we now discuss a novel decentralized spectral clustering approach [16] that when
coupled with AWR [17] provides a powerful tool for simulating large dynamic systems, making every step of the UQ
approach scalable.

3.2 Graph Decomposition

The problem of partitioning the system of equations (1) into subsystems based on how they interact or are coupled to
each other can be formulated as a graph decomposition problem. Given the set of statesx1, ..., xn and some notion
of dependencewij ≥ 0, i = 1, ..., n, j = 1, ..., n between pairs of states, an undirected graphG = (V, E) can be
constructed. The vertex setV = {1, . . . , n} in this graph represent the statesxi, and the edge set isE ⊆ V × V ,
where a weight̄wij ≥ 0 is associated with each edge(i, j) ∈ E, andW = [w̄ij ] is then × n weighted adjacency
matrix ofG. In order to quantify coupling strength̄wij between nodes or states, we propose to use

w̄ij =
1
2
[|J ij |+ |Jji|], (37)

whereJ = {(1/Ts)
∫ t0+Ts

t0
Jij [x(t; ξm), ξm, t]dt}, is the time average of the Jacobian,

J(x, ξ, t) =
[
∂fi[x(t; ξ), ξ, t]

∂xj

]
, (38)

computed along the solutionx(t; ξ) of the system (1) for nominal values of parametersξm. Use of the system Jacobian
for horizontal vertical graph decomposition can also be found in [12].
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We will now discuss spectral clustering (see [13], a popular graph decomposition/clustering approach that allows
one to partition a undirected graph given its adjacency matrixW ). In this method, first a (normalized) graph Laplacian
is constructed as follows [14, 25, 26]:

Lij =





1 if i = j

−w̄ij/
∑N

`=1 w̄i` if (i, j) ∈ E

0 otherwise,

(39)

or equivalently asL = I − D−1W , whereD is the diagonal matrix with the row sums ofW . The clustering as-
signment/decomposition is then obtained by computing the eigenvectors/eigenvalues ofL. In particular, one uses the
signs of the components of the second and higher eigenvectors to partition the nodes in the graph into clusters [13].
Traditionally, one can use standard matrix algorithms for eigenvector/eigenvalue computation [27]. However, as the
size of the dynamic system or network (and thus corresponding adjacency matrix) increases, the execution of these
standard algorithms becomes infeasible on monolithic computing devices. To address this issue, distributed eigen-
value/eigenvector computation methods have been developed; see for example [28].

In [16], a wave equation-based distributed algorithm to partition large graphs has been developed which computes
the partitions without constructing the entire adjacency matrixW of the graph [13]. In this method one “hears” clusters
in the graph by computing the frequencies [using fast Fourier transform (FFT) locally at each node] at which the graph
“resonates.” In particular, one can show that these “resonant frequencies” are related to the eigenvalues of the graph
LaplacianL (39) and the coefficients of FFT expansion are the components of the eigenvectors. In fact, the algorithm
is provably equivalent to the standard spectral clustering [13]; for details see [16].

The steps of the wave equation-based clustering algorithm are as follows. One starts by writing the local update
equation at nodei based on the discretized wave equation,

ui(t) = 2ui(t− 1)− ui(t− 2)− c2
∑

j∈Ni

Lij , uj(t− 1) (40)

whereui(t) is the value ofu at nodei at timet andLij are the local entries of the graph Laplacian. At each nodei,
ui(0) = ui(−1) is set to a random number on the interval[0, 1]. One then updates the value ofui using Eq. (40) until
t = Tmax (for a discussion on how to pickTmax see [16]). Note thatui(t) is a scalar quantity and one only needs
nearest neighbor information in Eq. (40) to compute it. One then performs a local FFT on[ui(1), . . . , ui(Tmax)] and
then assigns the coefficients of the peaks of the FFT tovij . Here the frequency of thejth peak is related toλj , thejth
eigenvalue of the graph LaplacianL, andvij is theith component of thejth eigenvector.

In [16], it has been shown that for wave speedc <
√

2 in Eq. (40), the above wave equation-based algorithm is
stable and converges. Moreover, the algorithm converges inO(

√
τ) steps, whereτ is the mixing time of the Markov

chain [16] associated with the graphG. The competing state-of-the-art algorithm [28] converges inO[τ(log(n)2)]. For
large graphs or datasets,O(

√
τ) convergence is shown to provide orders of magnitude improvement over algorithms

that converge inO[τ(log(n)2)]. For detailed analysis and derivations related to the algorithm, we refer the reader
to [16].

4. ITERATIVE UNCERTAINTY QUANTIFICATION APPROACH

In this section we discuss how gPC and PCM can be integrated with the WR scheme, extending it to a probabilistic
setting. As mentioned earlier, we refer to this iterative UQ approach as PWR. Figure 1 shows the schematic of PWR
framework. In the intrusive PWR, the subsystems obtained from decomposing the original system are used to im-
pose a decomposition on the system obtained by Galerkin projection based on the gPC expansion. Further, the weak
interactions are used to discard terms which are expected to be insignificant in the gPC expansion, leading to what
we call an approximate Galerkin projected (AGP) system. We then propose to apply standard or adaptive WR on the
decomposed AGP system to accelerate the UQ computation. In the nonintrusive form of PWR, rather than deriving the
AGP system, one works directly with subsystems obtained from decomposing the original system. At each waveform
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FIG. 1: Schematic of intrusive (left) and nonintrusive (right) PWR.

relaxation iteration we propose to apply PCM at subsystem level and use gPC to propagate the uncertainty among the
subsystems. Note that unlike intrusive PWR (where deterministic decoupling vectors or deterministic waveforms are
exchanged), in nonintrusive PWR stochastic decoupling vector or probabilistic waveforms represented in gPC basis
are exchanged between subsystems at each iteration.

We first describe the key technical ideas behind intrusive and nonintrusive PWR though an illustration on a simple
example in Section 4.1. These notions are fully generalized later in Sections 4.2–4.4. We also prove the convergence
of the PWR approach (in Section 4.5), and in Section 4.6 discuss the computational gain it offers over standard
application of gPC and PCM.

4.1 Main Ideas of PWR

We illustrate the proposed PWR framework through an example of parametric uncertainty in a simple system (1).
Consider the following coupled oscillator system:

ẋ1 = f1(x1, x2, ω1, t) = ω1 + K12 sin(x1 − x2),

ẋ2 = f2(x1, x2, x3,ω2, t) = ω2 + K21 sin(x1 − x2) + K23 sin(x3 − x2),

ẋ3 = f3(x2, x3, ω3, t) = ω1 + K32 sin(x2 − x3).

(41)

Here,ωi is the uncertain angular frequency of theith (i = 1, 2, 3) oscillator. We assume that parametersωi are
mutually independent, each having probability densityρi = ρi(ωi). The coupling matrixK
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K =




0 K12 0
K21 0 K23

0 0 K32


 (42)

is assumed deterministic withKij = O(ε), ε ¿ 1, so that the three oscillators in (1) weakly interact with each other,
i.e., the subsystem2 weakly affects subsystem1 and3, and vice versa.

4.1.1 Approximate Galerkin Projection for the Simple Example

In standard gPC, statesxi are expanded in a polynomial chaos basis as

xΣ,P
i (t,ω) =

NΣ∑

j=1

aji(t)Ψ
Σ,P
j (ω), i = 1, 2, 3, (43)

whereΨΣ,P
j ∈ WΣ,P , theP variate polynomial chaos space formed overΣ = {ω1,ω2,ω3}, andP = (P1, P2, P3)

determines the expansion order (see Section 2.1.1 for details). Note that in this expansion (43), the system states are
expanded in terms of all the random variablesω affecting the entire system. From the structure of system (1) it is
clear that the first subsystem is directly affected by the parameterω1 and indirectly by parameterω2 through the
the statex2. We neglect the second-order effect ofω3 on x1. A similar statement holds true for subsystem3, while
subsystem2 will be weakly influenced byω1 andω3 through statesx1 andx3, respectively. This structure can be
used to simplify the Galerkin projection as follows. Forx1 we consider the gPC expansion overΣ1 = Λ1

⋃
Λc

1,

xΣ1,P1
1 (t,ω1, ω2) =

NΣ1∑

j=1

aj1(t)Ψ
Σ1,P1
j (ω1,ω2), (44)

where
Λ1 = {ω1}, Λc

1 = {ω2}, (45)

andP1 = (P11, P12). Note that sinceω2 weakly affectsx1, the order of expansionP12 can be chosen to be smaller
compared toP11. Similarly, one can consider simplification forxΣ3,P3

3 (t,ω1,ω3). Forx2 following similar steps, we
define

Λ2 = {ω2}, Λc
2 = {ω1, ω3}, (46)

andP2 = (P21, P22, P23). By similar argument, one will chooseP21, P23 much smaller thanP22. We also introduce
the following two projections associated with the statex2:

P2,i(xΣ2,P2
2 ) =

NΣi∑

j=1

〈
xΣ2,P2

2 , ΨΣi,P2
j

〉
ΨΣi,Pi

j , (47)

wherei = 1, 3 and〈·, ·〉 is the appropriate inner product onWΣ,P (see Section 4.3 for details). With these expansions,
and using standard Galerkin projection we obtain the following system of deterministic equations:

ȧ = F(a, t), (48)

with appropriate initial conditions, where

F j1(a) =
∫

ΓΣ

f1[x
Σ1,P1
1 ,P2,1(xΣ2,P1

2 ), ω1, t]Ψ
Σ1,P1
j (ω)ρ(ω)dω,

F j2(a) =
∫

ΓΣ

f2[x
Σ1,P1
1 , xΣ2,P2

2 , xΣ3,P3
3 , ω2, t]Ψ

Σ2,P2
j (ω)ρ(ω)dω,

F j3(a) =
∫

ΓΣ

f3[P2,3(xΣ2,P2
2 ), xΣ1,P1

1 , ω3, t]Ψ
Σ3,P3
j (ω)ρ(ω)dω,

anda = (a1,a2,a3)T , with ai = (ai1, ..., aiNΣi
) andF = (F1,F2,F3)T with Fi = (F i1, ..., F 1NΛi

). We will refer
to (48) as an AGP system. The notion of AGP in a more general setting is described in Section 4.3.
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4.1.2 Intrusive PWR Illustrated on the Simple Example

In intrusive PWR, after performing the AGP explicitly, the system (48) is decomposed as

ȧij = F ji(ai,di, t), (49)

whered1 = P2,1(a2), d2 = (a1,a3) andd3 = P2,1(a2) are the decoupling vectors [here we overloaded notation
for P2,i(a2) to imply the coefficients in expansion (47)]. Note that the decomposition of system (48) is based on the
decomposition of the original system (41). Adaptive or standard WR, described in Section 3.1, can then be applied to
solve the decomposed system (49) iteratively. Since, the the system (49) is deterministic, deterministic waveforms or
deterministic decoupling vectorsdi, i = 1, 2, 3 are exchanged in each WR iteration (see Fig. 1 for an illustration).

4.1.3 Nonintrusive PWR Illustrated on the Simple Example

In the nonintrusive form of PWR, rather than deriving the AGP, one works directly with subsystems obtained from
decomposing the original system. The main idea here is to apply PCM at subsystem level at each PWR iteration, use
gPC to represent the probabilistic waveforms, and iterate among subsystems using these waveforms. Recall that in
standard PCM approach (Section 2.1.2), the coefficientsai

m(t) are obtained by calculating the integral

ami(t) =
∫

xΛi,Pi

i (t,ω)ΨΛi,Pi
m (ω)ρΛi(ω)dω. (50)

The integral above is typically calculated by using a quadrature formula and repeatedly solving theith subsystem over
an appropriate collocation gridCi(Σi) = Ci(Λi) × Ci(Λc

i ), where,Ci(Λi) is the collocation grid corresponding to
parametersΛi (and letls be the number of grid points for each random parameter inΛi), Ci(Λc

i ) is the collocation
grid corresponding to parametersΛc

i (and letlc be the number of grid points for each random parameter inΛc
i ). Since

the behavior of theith subsystem is weakly affected by the parametersΛc
i , we can take a sparser grid inΛc

i dimension,
i.e.,lc < ls, as we took lower-order expansion for these random variables in Section 4.1.1. Below we outline key steps
in nonintrusive PWR:

Step 1: (Initialization of the relaxation process with no coupling effect): SetI = 1; guess an initial waveform
x0

i (t) consistent with initial condition. Setd1
1 = x0

2, d1
2 = (x0

1, x
0
3), d1

3 = x0
2, and solve

ẋ1
i = fi[x1

i ,d
1
i (t), ωi, t], (51)

with an initial conditionx1
i (0)=x0

i (0) on a collocation gridCi(Λi). Determine the gPC expansionxΛi,Pi,1
i (t, · )

by computing the expansion coefficients from the quadrature formula (50).

Step 2: (Initialization of the relaxation process, incorporating first level of coupling effect): SetI = 2 and let
d2

1 = xΛ2,P2,1
2 , d2

2 = (xΛ1,P1,1
1 , xΛ3,P3,1

3 ), d2
3 = xΛ2,P2,1

2 be thestochastic decoupling vectors. Solve

ẋ2
i = fi[x2

i ,d
2
i (t, ·),ωi, t], (52)

over a collocation gridCi(Σi) to obtainxΣi,Pi,2
i (t, ·). From now on we shall denote the solution of theith

subsystem atIth iteration byxΣi,Pi,I
i .

Step 3: (Analyzing the decomposed system at theIth iteration): Set the decoupling vectors,dI
1=P2,1(xΣ2,P2,I−1

2 ),
dI

2 = (xΣ1,I−1
1 , xΣ3,P3,I−1

3 ), dI
3 = P2,3(xΣ2,P2,I−1

2 ), and solve

ẋI
i = fi[xI

i ,d
I
i (t, ·), ωi, t], (53)

over a collocation gridCi(Σi) and obtain the expansionxΣi,Pi,I
i (t, ·).

Step 4: (Iteration): SetI = I + 1 and go to step 5 until satisfactory convergence has been achieved.

Note that in the above nonintrusive PWR, the decoupling vectors are stochastic and so at each iterationprobabilistic
waveformsare exchanged between subsystems (see Fig. 1 for an illustration). We next generalize the intrusive and
nonintrusive PWR introduced above in the forthcoming sections.
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4.2 Decomposition of Galerkin Projected System

We begin by revisiting the complete Galerkin system (12). To apply WR, recall that the first step is the assignment-
partitioning (see Section 3.1). There are two possible approaches for partitioning the complete Galerkin system. One
can first split the original dynamic system (1), and then use this decomposition to partition the complete Galerkin
projection (12) by assigning the model coefficients in (11) for each state to the cluster to which it is assigned while
decomposing system (1). As previously explained in Section 3.2, the partitioning is performed by representing the
dynamic system (1) as a graph with the symmetrized time-averaged Jacobian (37) as the weighted adjacency matrix.
One can then apply the wave equation-based decentralized clustering algorithm outlined in Section 3.2.

Alternatively, one can perform this decomposition directly on the complete Galerkin projection (12). Let the
symmetrized time-averaged Jacobian for the resulting system (12) be

w̃ij =
1
2
[|J̃ij |+ |J̃ji|], (54)

whereJ̃ = {(1/Ts)
∫ t0+Ts

t0
J
′
ij [a(t), t]dt} is the time average of the Jacobian,

J
′
(a, t) =

[
∂Fik[a(t)]

∂aik

]
, (55)

computed along the solutiona(t) of the system (12). This gives

J
′
(a, t) =

∫

ΓΣ

∂fk[xΣ,P (ξ, t), ξk, t]
∂ajk

ΨΣ,P
i (ξ)wΣ(ξ)dξ. (56)

Taylor expandingfk[x(ξ, t), ξk, t] locally gives

J
′
(a, t) = J(a, t) + O(a2). (57)

Thus, one expects to get similar results by performing clustering on the original system [in (1)] to that obtained based
on complete Galerkin system (12). Because the dimensionality of system (1) is much lower than that of system (12),
the first decomposition is less computationally challenging than the latter. In this work, we use the original system to
determine the decomposition and use that to impose the partition of the Galerkin projection. Given the decomposition
of system (12), one can use the WR or its adaptive form to simulate the system in a parallel fashion. However,
before doing this one can further exploit the weak interaction between subsystems to reduce the dimensionality of the
complete Galerkin system, as described in Section 4.1.1. We next describe this approximate Galerkin projection in a
more general setting.

4.3 Approximate Galerkin Projection and Intrusive Probabilistic Waveform Relaxation

Recall that in the gPC expansion (11), all the system states are expanded in terms of random variables affecting the
entire system. However, theith subsystem in the decomposition [see Eq. (23)] is directly affected by the parameters
Λi [see definition (27)] and indirectly by other parameters through the decoupling vector [see definition (28)]. We
shall denote by

Λc
i =

⋃

j∈Ni

Λj , (58)

the set of parameters which indirectly affect theith subsystem through the immediate neighbor interactions, and
denote by

Σi = Λi ∪ Λc
i , (59)

the set of parameters that directly and indirectly (through nearest neighbor interaction) affect theith subsystem.
Under the hypothesis that theith subsystem is dynamically weakly coupled with its nearest neighbors, uncertainty
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in parametersΛi
c will weakly influence the states in theith subsystem through the decoupling vector, while the

uncertainty in parametersΣ \Σi can be neglected. To capture this effect, consider aP -variate space (analogous to the
P -variate space introduced in Section 2.1.1)

WΛ,P ≡
⊗

|d|∈P
W ki,dki , (60)

formed over any random parameter subsetΛ = {ξi1 , ξi2 , ..., ξin
} ⊂ Σ. We denote the basis elements ofWΛ,P by

ΨΛ,P
i , i = 1, ..., NΛ, whereNΛ = dim(WΛ,P ). Note that for anyΛ1 ⊂ Λ2 ⊂ Σ,

W ∅ ⊂ WΛ1,P1 ⊂ WΛ2,P2 ⊂ WΣ,P , (61)

whereW ∅ = {0} is theP -variate space corresponding to the empty set. Also, recall thatP1, P2 are vectors which
control the expansion order in gPC expansion. The inner product onWΣ,P induces an inner product onWΛ,P as
follows

〈X1(ξ), X2(ξ)〉Λ =
∫

ΓΛ

X1(ξ)X2(ξ)ρΛ(ξ)dξ, (62)

for anyX1(ξ), X2(ξ) ∈ WΛ,P . Using this inner product, we introduce a projection operator

PrΛ2
Λ1

: WΛ2,P2 → WΛ1,P1 , (63)

such that for anyX(ξ) ∈ WΛ2,P2

PrΛ2,P2
Λ1,P1

(X)(ξ) =
NΛ1∑

i=1

〈X, ΨΛ1,P1S
i 〉ΛΨΛ1,P1

i (ξ). (64)

With respect to the given decompositionD imposed on the system (see Section 3.1), we define a projection operator
Pi,j indexed by subsystemi and statexj

Pi,j ≡





PrΣ,P
Σi,Pi

, if D(j) = i,

PrΣ,P
ΛD(j)

⋃
(Λc

D(j)

⋂
Λi),Pi

if D(j) 6= i,Ni

⋂ND(j) 6= ∅,

P rΣ,P
∅ if D(j) 6= i,Ni

⋂ND(j) = ∅.

Remark 4.1. For any subsystemi, since the parametersΛc
i weakly affect it, we can adaptively select component

of vectorPi = (Pi1, ..., Pi,|Σi|) so that a lower-order expansion is used in components corresponding to random
variables inΛc

i .

For any subsystemi and a vectorxΣ,P (ξ, t) = [xΣ,P
k1

(ξ, t), ..., xΣ,P
kn

(ξ, t)] [wherexΣ,P
i (ξ, t) is standard gPC

expansion (11)], we associate a vector valued projection operator as follows:

Pi(xΣ,P ) = [Pi,k1(xΣ,P
k1

), ...,Pi,kn(xΣ,P
kn

)]. (65)

In terms of these operators, for any statexk an approximate Galerkin projected equation is defined as

d

dt
Pi,k[xΣ,P

k (ξ, t)] = fk{Pi[xΣ,P (ξ, t)], ξk, t}, (66)

wherei = D(k) is the index of the subsystem to which the statek belongs. More precisely, the above system can be
expressed as

ȧ
i
jk = F

i

jk(a, t), (67)
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wherea = (aD(1)
11 , ..., a

D(1)
NΣD(1),1

, ..., a
D(n)
1n , ..., a

D(n)
NΣD(n),n

)T

F
i

jk =
∫

ΓΣi

fk{Pi[xΣ,P (ξ, t)], ξk, t}ΨΣi,Pi

j (ξ)ρΣi
(ξ)dξ, (68)

andj = 1, ..., NΣi
, k = 1, ..., n with i = D(k). LetF = (F

D(1)

11 , ..., F
D(1)

NΣD(1),1
, ..., F

D(n)

1n , ..., F
D(n)

NΣD(n),n
)T ; then, the

system (67) can be compactly written as
ȧ = F(a, t), (69)

with appropriate initial condition [see expression 13] and will be referred to as the approximate Galerkin projection
(AGP). Using this generalization of AGP system, it is straightforward to generalize the intrusive PWR introduced in
Section 4.1.2.

4.3.1 Intrusive PWR Algorithm

In the intrusive PWR, one applies the WR to the AGP system. Based on the discussion in Section 4.2, the decompo-
sitionD of the original system (1) is used to impose a decomposition on the system (69), leading to

ȧi = Fi(ai,di, t), (70)

for i = 1, ..., m, where
ai = (ai

1k1
, ..., ai

NΣi,k1
, ..., ai

1k|Ci|
, ..., ai

NΣi
,k|Ci|

)T , (71)

Fi = (F
i

1k1
, ..., F

i

NΣi,k1
, ..., F

i

1k|Ci|
, ..., F

i

NΣi
,k|Ci|

)T , (72)

ki ∈ Ci, anddi = (aT
ji

, ...,aT
jNi

)T is the decoupling vector (recall notation from Section 3.1). One then follows the
procedure for waveform relaxation or its adaptive version, as described in Section 3.1. Adaptive WR can lead to a
significant increase in convergence of WR as demonstrated in [17], and would be illustrated later in the Section 5.

As discussed in Section 2.1.1, the projection step (66) can be very tedious and in some cases not possible. Hence,
applying waveform relaxation directly to the system (70) may not be practical in many instances. In the next section,
we describe an alternative nonintrusive approach using probabilistic collocation, which does not require the projection
step (66) explicitly.

4.4 Nonintrusive Probabilistic Waveform Relaxation

In terms of the projection operator (65), we can rewrite each subsystem in (23) as

ẏi = Fi{yi,Pi[di(t, ·)], Λi, t}, (73)

wheredi(t, ·) is thestochastic decoupling vectoror probabilistic waveform,

di(t, ·) = [(yΣj1 ,Pj1
ji

)T , ..., (y
ΣjNi

,PjNi
jNi

)T ]T . (74)

where we have explicitly indicated the dependence on the parameters [see definition (28)]. Here, for anyi = 1, ..., m,
yΣi,Pi = (xΣi,Pi

ji
1

, ..., xΣi,Pi

ji
Mi

)T , with

xΣi,Pi

ji
k

(ξ, t) =
NΣi∑
m=1

amji
k
(t)ΨΣi,Pi

m (ξ) = Pi,ji
k(xΣ,P

ji
k

). (75)

By definition the coefficientsamji
k
(t) in the above expansion satisfy the system (67). These coefficients can be ob-

tained by using the quadrature formula (21), by repeatedly solving the system (73) over an appropriate collocation
grid C(l, ni),

C(l, ni + nc
i ) = C(o, ni)× C(m, nc

i ), (76)
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wherel = (o,m), C(o, ni) = C1
o1
× ...×C1

oni
is the collocation grid corresponding to parametersΛi, with ni = |Λi|,

o = (o1, ..., oni), andC(m, nc
i ) = C1

m1
× ... × C1

mnc
i

is the collocation grid corresponding to parametersΛc
i , with

nc
i = |Λc

i | andm = (m1, ..., mnc
i
). For simplicity we takeo1 = ... = oni

= ls andm1 = ... = mnc
i

= lc for
i = 1, ..., m. Since, the behavior of theith subsystem is weakly affected by the parametersΛc

i through the decoupling
vector, then consistent with remark (4.1) we can take

lc < ls, (77)

leading to an adaptive collocation grid for each subsystem. With this, we are ready to generalize the nonintrusive PWR
approach introduced in Section 4.1.3.

4.4.1 Non-Intrusive PWR Algorithm

Step 1: Apply graph decomposition (see Section 3 for details) to identify weakly interacting subsystems in
system (1).

Step 2: (Assignment-partitioning process): Partition (1) intom subsystems (obtained in step 1) leading to system
of equations given by (23). Obtain,Λi, Λc

i andΣi for each subsystem,i = 1, ..., m. Choose the parameters
lsi, lci, Pi.

Step 3: (Initialization of the relaxation process with no coupling effect): SetI = 1 and guess an initial waveform
{y0

i (t) : t ∈ [0, Ts]} for eachi = 1, ..., m consistent with initial condition (see step 1 in relaxation process
described in Section 3.1). Set

d1
i (t) = [yj1(t), ...,yjNi

(t)], (78)

i = 1, ..., m, and solve for{yΛi,Pi,1
i (t), t ∈ [0, Ts]} using

ẏ1
i = Fi(y1

i ,d
1
i (t),Λi, t), (79)

with an initial conditiony1
i (0)=y0

i (0) on a collocation gridC(o, ni). Determine the gPC expansionyΛi,Pi,1
i (t, ·)

overP -variate polynomial spaceWΛi,Pi by computing the expansion coefficients from the quadrature formula
(21).

Step 4: (Initialization of the relaxation process, incorporating first level of coupling effect): SetI = 2 and for
eachi = 1, ...,m, set

d2
i (t, ·) = [yΛj1 ,Pj1 ,1

j1
(t, ·), ...,yΛjNi

,PjNi
,1

jNi
(t, ·)], (80)

and solve for{y2
i (t), t ∈ [0, Ts]} from

ẏ2
i = Fi(y2

i ,d
2
i (t, ·), Λi, t), (81)

with an initial conditiony2
i (0) = y0

i (0), over a collocation gridC(l, ni+nc
i ). Obtain the expansionyΣi,Pi,2

i (t, ·)
using (75). From now on we shall denote the solution vector of theith subsystem atIth iteration byyΣi,Pi,I

i .

Step 5: (Analyzing the decomposed system at theIth iteration): For eachi = 1, ...,m, set

dI
i = (yΣj1Pj1 ,(I−1)

j1
, ...,y

ΣjNi
,PjNi

,(I−1)

jNi
), (82)

and solve for{yI(t) : t ∈ [0, Ts]} from

ẏI
i = Fi{yI

i ,Pi[dI
i (t, ·)], Λi, t}, (83)

with initial conditionyI
i (0) = y0

i (0) over a collocation gridC(l, ni + nc
i ). Obtain the expansionyΣi,Pi,I

i (t, ·)
using the expansions (75).

• Step 6: (Iteration): SetI = I + 1 and go to step 5 until satisfactory convergence has been achieved.
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4.5 Convergence of PWR

Below, we give the convergence proof for the iterative PWR approach. The proof is based on showing that the AGP
system is Lipschitz if the original systems is Lipschitz (see condition 2), and then invoking the standard WR conver-
gence result (Section 3.1).

Proposition 4.1. Convergence of PWR: The intrusive and nonintrusive PWR algorithms described in Sections 4.3.1
and 4.4.1, respectively, converge.

Proof: We prove the result for intrusive PWR. By construction, because nonintrusive PWR algorithm solves the
AGP system (69) in a different way, the convergence result holds for nonintrusive PWR as well. Consider the AGP
system (69) and let

a1 = (a1D(1)
11 , ..., a

1D(1)
NΣD(1),1

, ..., a
1D(n)
1n , ..., a

1D(n)
NΣD(n),n

)T , (84)

and
a2 = (a2D(1)

11 , ..., a
2D(1)
NΣD(1),1

, ..., a
2D(n)
1n , ..., a

2D(n)
NΣD(n),n

)T . (85)

Let for a givenk = 1, ..., n, i = D(k), then

Pi,k[xl,Σ,P
k (t, ξ)] =

NΣi∑

j=1

ali
jk(t)ΨΣi,P

j (ξ), (86)

andPi(xl,Σ,P ) = [Pi,1(xl,Σ,P
1 ), ...,Pi,n(xl,Σ,P

n )], for l = 1, 2 and for simplifying notation we have dropped sub-
scripts onP vectors. Then for eachk = 1, ..., n, i = D(k), j = 1, ..., NΣi ,

||F i

jk(a2)− F
i

jk(a1)|| =
∣∣∣∣
∫

ΓΣ

[fk(Pi(xΣ,P,2), ξ, t)− fk(Pi(xΣ,P,1), ξ, t)]×ΨΣi,P
j (ξ)wΣ(ξ)dξ

∣∣∣∣

≤
∫

ΓΣ

L(ξ)




n∑
m=1

NΣD(m)∑
p=1

|(al,D(m)
pm − a2,D(m)

pm )ΨΣD(m),P
p |


× |ΨΣi,P

j (ξ)|wΣ(ξ)dξ

≤
n∑

m=1

NΣD(m)∑
p=1

L
iD(m)
pj |(a1,D(m)

pm − a2,D(m)
pm )|

(87)

where,

Liq
pj =

∫

ΓΣ

L(ξ)|ΨΣq,P
p (ξ)||ΨΣi,P

j (ξ)|wΣ(ξ)dξ. (88)

For a giveni = 1, ..., n andj = 1..., NΣD(i) , let Lg
ij =

[
L
D(i)D(1)
j1 ...L

D(i)D(1)
jNΣD(1)

...L
D(i)D(n)
j1 ...L

D(i)D(n)
jNΣD(n)

]
and define

Lg
i =




Lg
i1
...

Lg
iNΣD(i)


, Lg =




Lg
1
...

Lg
n


 , (89)

then,

||F(a2)− F(a1)|| ≤ L||a2 − a1||, (90)

whereL = ||Lg|| is a matrix norm ofLg. Hence, the system (69) is Lipschitz. Thus, given the original system (1) is
Lipschitz [condition (2)], the approximate system (69) is also Lipschitz as shown above (90). Hence, by proposition 3.1
(adaptation of Theorem 5.3 in [18]), we conclude that PWR converges.
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The question of how the decomposition of the system and the choice of the PWR algorithm parametersP, ls, lc
influence: (1) the rate of convergence of PWR, and (2) the approximation error [due to the truncation introduced in the
AGP system (69), the use of adaptive collocation grid, i.e., condition (77) and computation of the modal coefficients
by the quadrature formula], needs to be further investigated.

4.6 Scalability of PWR with Respect to Standard PCM

The scalability of nonintrusive PWR relative to PCM is shown in Fig. 2, where the ratioRF /RI indicates the com-
putation gain over standard full grid PCM approach applied to the system (1) as a whole. HereRF = lp is the
number of deterministic runs of the complete system (1), which comprisesm subsystems each withpi, i = 1, ..., m
uncertain parameters, such thatp =

∑m
i=1 pi andl denotes the level of full grid. Similarly,RI = 1 +

∑m
i=1 lpi

s +
Imax(

∑m
i=1 lpi

s

⊗
j 6=i l

pj
c ) is the total computational effort with the PWR algorithm (including additional effort in-

curred due to several iterations), whereImax is the number of PWR iterations. Clearly, the advantage of PWR becomes
evident as the number of subsystemsm and parameters in the network increases. Note that the linear scaling depicted
in Fig. 2 is only for the ratioRF /RI . Moreover, PWR is inherently parallelizable.

5. EXAMPLE PROBLEMS

In this section we illustrate intrusive and nonintrusive PWR through several examples of linear and nonlinear net-
worked systems with increasing number of uncertain parameters. While most examples are of ODEs, we also give an
example application of PWR to an algebraic system. This illustrates how in principle one can extend the application of
PWR to DAEs, just like the WR approach extends to DAEs [15]. Through some examples we study how the strength
of interaction between subsystems affects the convergence rate and the approximation error of PWR. In one of the
examples related to the building model, we also show how time-varying uncertainty can be incorporated into standard
UQ framework by using the Karhunen-Loeve expansion. In all the examples, we compare the solution accuracy of
PWR with other UQ approaches (e.g., Monte Carlo and quasi-Monte Carlo methods, QMC), and wherever appropriate
mention computation gain offered by PWR over the standard application of gPC and PCM.

5.1 Stability Problem

We first consider a simple system, with two states(x1, x2) ∈ R2,
ẋ1 = ax2

1 + cx2
2 − v1, (91)
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FIG. 2: Scalability of PWR algorithm with respect to standard PCM, when implemented with full grid collocation as
the subsystem level UQ method, withpi = 5, ∀i = 1, ..., m, l = ls = 5, lc = 3 andImax = 10, 50, 100: these numeric
values are chosen for illustration purposes. The computational gain of PWR becomes insensitive toImax (number of
iterations), as the number of subsystemsm increases.
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ẋ2 = cx2
1 + bx2

2 − v2, (92)

wherec, v1, v2 are fixed parameters, anda, b are uncertain with Gaussian distributionG and tolerance20% (i.e.
σ = 0.2µ, whereµ is the mean andσ is the standard deviation ofG). The parameterc determines the coupling
strength between two subsystems described by the two equations. The output of interest is the stability of the system,
which is determined byλm, the maximum eigenvalue of the Jacobian

J(x10, x20; a, b, c) =
(

2ax10 2cx20

2cx10 2bx20

)
,

wherex10, x20 is the equilibrium point satisfying

ax2
10 + cx2

20 − v1 = 0,

cx2
10 + bx2

20 − v2 = 0.
(93)

Figure 3 shows the UQ results obtained by applying PWR [withls = 5, lc = 3, andP1 = (5, 3), P2 = (3, 5)]
to iteratively solve the algebraic system (93). We make comparison with thetrue [to imply a more accurate result
obtained by solving the complete system (93)] distribution ofλm obtained by using a full collocation grid on the
parameter space(a, b) with la = 5, lb = 5, P = (5, 5). PWR converges to the true mean and variance as shown in the
left and right panels of Fig. 3 for two different values ofc. As the coupling strengthc increases (see the right panel in
Fig. 3), the number of iterations required for the convergence increases, as expected.

5.2 Building Example

For energy consumption computation, a building can be represented in terms of a reduced order thermal network
model of the form [29]

dT
dt

= A(u(t); ξ)T + B

(
Qe(t)
Qi(t)

)
, (94)

whereT ∈ Rn is a vector comprising internal zone air temperatures and internal and external wall temperatures;
A[u(t); ξ] is the time-dependent matrix withξ being parameters,u(t) is control input vector (comprising zone supply
flow rate and supply temperature), vectorsQe = [Tamb(t), Qs(t)]T represent the external (outside air temperature and
solar radiation), andQi is the internal (occupant) load disturbances. We consider the problem of computing uncertainty
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FIG. 3: Left panel: Convergence of mean (µ) and variance (σ) of λm for c = 0.1. Right panel: Convergence of mean
and variance ofλm for c = 2.8. Black line indicates the true values.
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in building energy consumption due to uncertainty in building thermal-related properties and uncertain disturbance
loads. These uncertainties can be categorized into: (i) static parametric uncertainty which include parameters such as
wall thermal conductivity and thermal capacitance, heat transfer coefficient, window thermal resistance etc.; and (ii)
time-varying uncertainties which include the external and internal load disturbances.

Recall that the traditional UQ approaches and PWR, which builds on them, can only deal with parametric uncer-
tainty. To account for time-varying uncertain processes, we employ the Karhunen-Loeve (KL) expansion [30]. The KL
expansion allows representation of second-order stochastic processes as a sum of random variables. In this manner,
both parametric and time-varying uncertainties can be treated in terms of random variables. We next demonstrate both
intrusive and nonintrusive PWR methods.

5.2.1 Two-Zone Example

We first consider a simplified two-zone building model as shown in Fig. 4. Here the stateT is a 10-dimensional
vector comprising internal wall temperatures and the internal zone air temperatures, where we have assumed that
the outer wall surfaces are held at ambient temperature. We also assume that the ambient temperature and solar load
are deterministic fixed quantities and there is no internal occupant load. Thus, in computing the uncertainty in the
zone temperatures, we only consider parametric uncertainty. Specifically, we assume that the heat transfer coefficient
and the thermal conductivity of the walls in each zone have standard deviations of10% around their nominal values
of 3.16 W/m2/K and 4.65 W/m/K, respectively. Thus, locally each zone is affected by two uncertain parameters,
with heat transfer coefficient being a common (i.e., same) parameter and thermal conductivity being the other. Using
complete Galerkin projection withPi = (2, 2, 2), i = 1, 2, gives rise to a60-state ODE model. To apply WR/AWR
to this system, we first identify the weakly interacting states. By construction the two zones weakly affect each other,
which is identified by the spectral clustering [13] (or wave equation-based clustering [16]) applied to the system (94).
This decomposition is imposed on the complete Galerkin system, as explained in Section 4.3.1. As expected, we found
that if one applies spectral clustering to the complete Galerkin system instead, one recovers the same decomposition.

Treating1000 Monte Carlo (MC) samples as the truth, we compare the results of a simulated full Galerkin pro-
jected system using both standard waveform relaxation [18] as well as adaptive waveform relaxation [17] in Fig. 5(a).
AWR provides a speed-up by a factor of≈ 12. In Fig. 5(a), one can see that the complete Galerkin projection predicts
the same temperature variation over8 h as MC-based methods.

As explained before, one can further exploit the weak interaction between the two zones to reduce the overall
number of equations in Galerkin projection. To construct the AGP system, we reduce the order of expansion for the
random parameters indirectly affecting each zone so thatP1 = (2, 2, 1) andP2 = (1, 2, 2). With this, the number of
equations in Galerkin projection reduces from60 to 50. The resulting solution is shown in Fig. 5(a). We see that the

FIG. 4: Diagram of the two-zone thermal model of a building.Tamb(t) = 293 K in this example.
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FIG. 5: (a) Comparison of Monte Carlo, complete Galerkin projection, and approximate Galerkin projection. (b)
Normalized error in waveform relaxation as a function of iteration count with increasing coupling. Complete Galerkin
and approximate Galerkin are shown. Approximate Galerkin system is found to have greater error as a function of
iteration number.

error starts to grow as time increases. However, over8 h the max error in the room temperatures is5× 10−2 K. Thus,
despite reducing the computational effort, one can still get a fairly accurate answer.

Figure 5(b) shows the effect of coupling (which is the reciprocal of the coefficient of thermal conductivity of the
internal wall) on errors introduced in complete and approximate Galerkin projections. As expected, the approximate
Galerkin projection has a higher error [given byET (t)] than complete Galerkin projection [given byEC(t)]. Moreover
this error is more pronounced at low iteration numbers. From the figure, it also clear that as the coupling increases, the
number of iterations required for obtaining same solution accuracy increases. For further discussion on the relationship
between the coupling and number of iterations, see [17].

5.2.2 Multizone Example

In this section, we consider a larger6-zone building thermal network model with68 states. This model admits a
decomposition into23 subsystems, as revealed by the spectral graph approach [see Fig. 6(b)]. This decomposition is
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FIG. 6: (a) Bands of eigenvalues of time-averagedA(t; ξ) for nominal parameter values. (b) First spectral gap in
graph Laplacian revealing23 subsystems in the network model.
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consistent with three different timescales (associated with external and internal wall temperature, and internal zone
temperatures) present in the system, as shown by the three bands in Fig. 6(a).

Next we demonstrate the nonintrusive PWR approach to compute uncertainty in energy consumption due to both
parametric uncertainty and time varying uncertain loads. As described earlier, we use the KL expansion to transform
time-varying uncertainty into parametric form.

KL Expansion [30]: Let {Xt = X(ξ, t), t ∈ [a, b]} be a quadratic mean-square second-order stochastic process
with covariance functionsR(t, s). If {φn(t)} are the eigenfunctions of the integral operator with kernelR(·, ·) and
{λn} the corresponding eigenvalues, i.e.,

∫ b

a

R(t, s)φn(s)ds = λnφn(t), t ∈ [a, b], (95)

then

X(t, θ) = X(t) + lim
N→∞

N∑
n=1

√
λnan(ξ)φn(t), uniformly for t ∈ [a, b], (96)

whereX(t) is the mean of the process and the limit is taken in the quadratic mean sense. The random coefficients
{an} satisfy

an(θ) =
1√
λn

∫ b

a

[X(ξ, t)−X(t)]φn(t)dt, (97)

and are uncorrelatedE[aman] = δmn. The basis functions also satisfy the orthogonality property

∫ b

a

φm(t)φn(t)dt = δmn, (98)

and the kernel admits an expansion of the form

R(s, t) = lim
N→∞

N∑
n=1

λnφn(t)φn(s). (99)

Generally, an analytical solution to the eigenvalue problem (95), also known as the Fredholm equation of the second
kind, is not available. Several numerical techniques have been proposed; we used the expansion method described in
[31].

To apply the KL expansion to the building problem, we assume that the stochastic disturbances[Tamb(t), Qs(t),
Qint(t)] are Gaussian processes. This guarantees that the random variablesan in the KL expansion are independent
Gaussian random variables with a zero mean [31]. Let the joint distribution of a nonstationary Gaussian process be

f(Xt, Xs) =
1

2πσ(s)σ(t)
√

1− ρ(t, s)
e−{1/2[1−ρ2(t,s)]}{[x2

t /σ2(t)]+[x2
s/σ2(s)]−[2ρ(t,s)xsxt/σ(t)σ(s)]} (100)

whereρ(t, s) is the correlation coefficient and is related to the covariance kernel as

R(t, s) = ρ(t, s)σ(t)σ(s). (101)

We assumed the processesTamb(t), Qs(t) to have a stationary exponential correlation function

R(t, s) = σ2e−(|t−s|/Tc), (102)

with a constant varianceσ2 and a constant correlation timescaleTc. For the internal occupancy loadQint(t) we
constructedR(t, s) as follows. For a typical office building, we know that the occupancy load is negligible with
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low variance during the early and later parts of the day. During peak hours in the middle of the day the occupant
load can show significantly high variability. To capture this effect we divided the normalized time domain[0, 1] =
[0, t1] ∪ (t1, t2) ∪ (t2, 1) and obtained the desired variation by choosing [in expression (101)]

σ(t) = σ {tanh[a(t− t1)]− tanh[a(x− t2)]} /2, ρ(t, s) = e−[|t−s|/Tc(s,t)], (103)

with the correlation timescale

Tc(s, t) = {1− tanh[a(t− t1)]}{1− tanh[a(s− t1)]}/4 + {1 + tanh[a(t− t2)]}{1 + tanh[a(s− t2)]}/4, (104)

and parametera controls the slope of thetanh function. Figure 7 shows the covariance kernel for external[Tamb(t),
Qs(t)] and internalQint(t) loads. For the choice of parameters indicated in Fig. 7, we found, using the expansion
method [31] with Legendre polynomials as the basis functions, that KL expansion up to order3 and up to order6 can
capture more than90% of total variance, for internal and external loads, respectively. Finally, note that these external
variables act like global variables which affect all zones in the building model. Such global variables can be easily
handled in the PWR framework by treating them as local variables [and hence including them in the local parameter
vector defined in (27)] for each subsystem (here the different building zone) they affect.

In UQ computation, we considered the effect of14 random variables comprising external wall thermal resistance
in the six zones, and first dominant random variable obtained in the KL representation of internal load (for each zone)
and first two dominant random variable obtained in KL expansion for solar load. Figure 8 show the nonintrusive PWR
results on the decomposed network model. As is evident, the iterations converge rapidly in two steps with a distribution
close to that obtained from QMC (using a 25,000-sample Sobol sequence) applied to the68 thermal network model
(94) as a whole.

5.3 Coupled Oscillators

Finally, we consider a coupled phase only oscillator system which is governed by nonlinear equations

ẋi = ωi +
N∑

j=1

Kij sin(xj − xi), i = 1, ..., n, (105)

wheren = 80 is the number of oscillators,ωi, i = 1, ..., n is the angular frequency of oscillators, andK = [Kij ] is the
coupling matrix. The frequenciesωi of every alternative oscillator, i.e.,i = 1, 3, ..., 79, is assumed to be uncertain with

(a) (b)

FIG. 7: (a) Covariance kernel (102 for external load withTc = 0.1 andσ = 0.1. (b) Covariance kernel (103) for
internal load witht1 = t2 = 0.3, a = 20, σ = 0.1.
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FIG. 8: Histogram of building energy computation for two iterations in PWR. Also shown is the corresponding
histogram obtained by QMC for comparison.

a Gaussian distribution with20% tolerance (i.e., with a totalp = 40 uncertain parameters); all the other parameters
are assumed to take a fixed mean value. We are interested in the distribution of the synchronization parametersR(t)
and phaseφ(t) defined byR(t)eφ(t) = 1/N

∑N
j=1 eixj(t). Figure 9 shows the topology of the network of oscillators

(left panel), along with the eigenvalue spectrum of the graph Laplacian (right panel). The spectral gap at40 implies
40 weakly interacting subsystems in the network.

Figure 10 shows UQ results obtained by application of nonintrusive PWR to the decomposed system withls = 5,
lc = 2. We make a comparison with QMC, in which the complete system (105) is solved at 25,000 Sobol points [32].
Remarkably, the PWR converges in 4–5 iterations, giving very similar results to that of QMC. It would be infeasible
to use full grid collocation for the networks as a whole, since even with lowest level of collocation grid, i.e.,l = 2 for
each parameter, the number of samples required becomeRF = 240 = 1.0995e + 012!.
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FIG. 9: Left panel shows a network ofN = 80 phase only oscillators. Right panel shows spectral gap in eigenvalues
of normalized graph Laplacian, that reveals that there are40 weakly interacting subsystems.
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6. CONCLUSION AND FUTURE WORK

In this paper we have proposed an uncertainty quantification approach which exploits the underlying dynamics and
structure of the system. Specifically, we considered a class of networked system whose subsystems are dynamically
weakly coupled to each other. We showed how these weak interactions can be exploited to overcome the dimension-
ality curse associated with traditional UQ methods. By integrating graph decomposition and waveform relaxation
with generalized polynomial chaos and probabilistic collocation framework, we proposed an iterative UQ approach
which we callprobabilistic waveform relaxation. We have developed both intrusive and nonintrusive forms of PWR.
We proved that this iterative scheme converges under weak assumptions and illustrated it in several examples with
promising results. In this work, we have also introduced an approximate Galerkin projection that, based on the results
of graph decomposition, computes “strong” and “weak” influence of parameters on states. An appropriate order of
expansion, in terms of the parameters, is then selected for the various states.

This approach is shown to accelerate UQ considerably. Several questions need to be further investigated; these in-
clude the effect of the choice of parameters on the rate of convergence and approximation error of the PWR algorithm.
In order to exploit multiple timescales that may be present in a system, multigrid extensions [33] of PWR may also be
desirable. In future work, we also intend to test our approach on much larger dynamic systems that arise in building
applications
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