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Techniques from scientific data mining are increasingly being used to analyze and understand data from scientific
observations, simulations, and experiments. These methods provide scientists the opportunity to automate the tedious
manual processing of the data, control complex systems, and gain insights into the phenomenon being modeled or
observed. This process of data-driven scientific inference borrows ideas and solutions from a range of fields including
machine learning, image and video processing, statistics, high-performance computing, and pattern recognition. The
tasks involved in these analyses include the extraction of structures from the data, the identification of representative
features for these structures, dimension reduction, and building predictive and descriptive models. At first glance, data
mining and data-driven analysis may appear unrelated to stochastic modeling and uncertainty quantification. But,
as we show in this paper, there are commonalities in the problems addressed and techniques used, providing the two
communities the opportunity to benefit from the expertise and experiences of each other.
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1. INTRODUCTION

Data mining is the semi-automated discovery of patterns, associations, anomalies, and statistically significant struc-
tures in data. Over the last decade, as data mining techniques have matured and evolved to address new types of
data and analysis problems, they have been successfully applied to a wide range of problems. Many of the more
commonly known examples of data mining occur in business and commercial applications, such as credit-card fraud
detection, recommender systems in on-line shopping, as well as text and web mining in search engines. However,
data mining techniques also are being applied in various science domains, where they are used to automate tedious
manual analysis, understand and control complex systems, and gain insights into the phenomenon being modeled or
observed [1].

In this paper, using example problems, we describe the techniques that are used in scientific data mining. We start
with an overview of the end-to-end process of data mining as applied to data sets from scientific applications. We then
discuss in more detail the algorithms commonly used in the steps that comprise the data mining process. Since data
mining borrows ideas and solutions from a range of fields including machine learning, image and video processing,
statistics, high-performance computing, and pattern recognition, there are a vast number of techniques used in each
one of these steps. While an in-depth discussion of all these techniques is out of the scope of this paper, we provide
references for those interested in additional information.

Before we describe the data mining process in detail, it might be helpful to consider why the work being done
in the data mining and related communities may be relevant to stochastic modeling and uncertainty quantification.
First, the tasks addressed in data mining are very similar to those performed in stochastic modeling and uncertainty
quantification. These include building surrogate models, addressing issues arising from high dimensionality of data
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sets, extracting useful information from massive data sets, and designing computational and physical experiments
to generate the data. This gives an opportunity for the two communities to benefit from each other, even though,
in some cases, the motivation for the techniques developed may be different. Second, the topic of data plays an
important role in uncertainty quantification as ensembles of simulations are run to characterize uncertainty in the
results. These simulations generate a large volume of data that must be compared to theory, experiments, and other
simulations. Techniques from data mining are, therefore, likely to be relevant in both the analysis of the data from
the simulations and in identifying the next set of simulations to run in the ensemble. Finally, there has been much
work done in the data analysis community, especially in statistics and machine learning, on methods for reasoning
in the presence of uncertainty. Solutions using Bayesian techniques [2] and probabilistic graphical models [3, 4] are
increasingly being considered for practical problems. The data mining community also is becoming aware of the need
to incoporate uncertainty into their algorithms, given their increasing use in decision support and for the analysis of
data with uncertain or missing values. As a result, there is a wealth of solutions in data mining techniques that could
be exploited for use in stochastic modeling and uncertainty quantification.

This paper is written from the perspective of a data mining practitioner. The techniques selected for a task are
those we have found useful in addressing the practical problems we have encountered in our work. Several general
texts have been included in the references for more details on other techniques that might be relevant. Our intent is
to introduce the stochastic modeling and uncertainty quantification communities to techniques that may be relevant
in the context of their problems, although these techniques were originally developed in a different domain. We also
hope that the inclusion of this paper in a special issue focusing on stochastic modeling and uncertainty quantification
would encourage data miners to borrow and adapt ideas from these communities and apply them to data analysis
problems.

2. THE SCIENTIFIC DATA MINING PROCESS

At a high level, any data mining endeavor, whether in the context of commercial or scientific data, can be considered
as composed of two main steps—the pre-processing of the data and the identification of the patterns in the data. In
the case of scientific applications, the data from observations, simulations, and experiments are often in the form of
multi-variate time series, structured and unstructured spatio-temporal data, or images. However, we are interested in
patterns among the objects in these data; for example, patterns among galaxies found in images from observational
astronomy. So, we first need to identify the objects in the data and find suitable representations for them. The raw
data may also be of poor quality, with noise, missing values, and low contrast. These data are frequently multivariate,
and may have been obtained from different sensors or simulations at different resolutions. To convert these data into
a form suitable for pattern recognition requires a substantial amount of pre-processing. In our experience analyzing
data from several scientific domains, we have found that an iterative and interactive approach composed of multiple
steps, as outlined in Fig. 1, has worked well. We next briefly describe the tasks in these steps [1]; these tasks, and the
algorithms for them, are further discussed in Sections 3–8, along with references for the interested reader.

In problems where the data sets are very large, we may want to make the initial analysis tractable by working with
a smaller sample (say, everynth time step in a simulation) or use multi-resolution techniques to reduce the size of
the data being processed. In other problems, where the data are from different sources, we may need to fuse them so
we can exploit the complementary information in these sources. This may include converting time series data from
different sensors that are sampled at different frequencies into data sampled at the same rate. Or, we may first need to
register images taken of phenomena over time before we can track objects of interest in them.

Next, we may want to improve the quality of the data though techniques such as signal and image de-noising and
image contrast enhancement. This is especially true for data collected during experiments and observations. Following
this cleanup step, we may need to identify objects in the data for problems where we are interested in patterns among
the structures or objects found in the data. These structures could be galaxies in astronomy images, coherent structures
in simulations of fluid turbulence, or fragments in experimental images used for understanding material fragmentation.

Once the structures in the data have been identified, we need to represent them using low-level “features.” These
features are any extractable measurement or attribute from the data, and should not be confused with the term “fea-
tures” often used in some domains to describe objects of interest in the data, such as vortices in fluid flow. In data
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FIG. 1: The end-to-end process of scientific data mining.

mining, the term feature represents characteristics of the objects that can be used to identify the patterns; for example,
the angle between two blobs that form a galaxy, the input parameters for a simulation, or the integrated value of a
variable over all grid points that comprise a structure in a simulation. Once the features for each object in the data
have been extracted, we may need to normalize them and check them for correctness.

In some problems, we may have a large number of features representing each object as we may extract far more
features than necessary, not knowing which ones are the most relevant and discriminating. The next step in the data
mining process is dimension reduction, where we reduce the number of features (the dimension of the problem) by
identifying the important ones.

Finally, we are ready to identify the patterns in the data. Depending on the task, this can be done using techniques
such as classification, clustering, anomaly detection, association rules, and so on. These patterns are evaluated by both
the data miners and the domain scientists, and the process refined until satisfactory results are obtained.

We next make several general observations on the process of scientific data mining. The data flow diagram pre-
sented in Fig. 1 is one that we have found to cover the needs of the scientific applications we have encountered.
However, variations and enhancements may be necessary as required by an application. For example, the order in
which the tasks are done may change from application to application and some tasks may be skipped if not required.
While much of the focus tends to be on the task of finding the patterns in the data, it is the data pre-processing steps
that are far more time consuming, frequently taking up to 80-90% of the total time for analysis. However, as we shall
see, it is critical that these steps be performed correctly for any data mining endeavor to be successful.

The scientific data mining process is very interactive, with the domain scientists involved in every step, starting
with an initial formulation of the problem to providing information on the data collection process, verifying the
objects extracted from the data, identifying representative features for the objects, and most importantly, validating
the results obtained at each step. The process is also an iterative process. The results of any one step may indicate that
a previous step needs to be refined. For example, the identification of patterns may indicate some features that are key
to discrimination are not rotation invariant and, therefore, objects that are rotated versions of objects in the training
set are not being labeled correctly. Or, the error rate of the pattern recognition step could be high, indicating that the
features extracted are not representative enough of the patterns being considered or that the quality of the training
data could be improved. As a result of these issues, data mining software can seldom be used as black boxes. Instead,
scientific data mining is a careful and considered application of techniques in close collaboration with the domain
scientists.

Each of the tasks in Fig. 1 can be implemented using several algorithms. These algorithms differ in their suitability
for a problem, the assumptions they make about the data, their computational complexity, the accuracy of the results,
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their robustness to input parameters, and their interpretability. Often, several algorithms may need to be tried before
one suitable for the data and problem is found. While many of the techniques used in data mining are independent of
the problem and application, there are times when we may need to design algorithms that are tuned to the characteris-
tics of the data or problem. This is especially true for the tasks of object identification and feature extraction, and also
may be relevant in the analysis of massive data sets, where we could exploit problem-specific characteristics to devise
a computationally inexpensive solution.

Finally, we observe that data mining borrows and builds on techniques from several disciplines ranging from
statistics to machine learning, pattern recognition, and signal and image processing. As a multi-disciplinary field, it
lies at the intersection of applied mathematics, computer science, and applications.

In the rest of this paper, I consider the tasks in the data mining process in more detail, and using examples, illustrate
some of the algorithms that can be used to address them. These tasks include the pre-processing of the data to improve
their quality; the identification of objects of interest in the data; the extraction of features to represent the objects; the
reduction in the number of features, that is, the dimension of the problem; the building of models from the data; and
the generation of the data themselves.

3. PRE-PROCESSING THE DATA TO IMPROVE QUALITY

Science data, especially those obtained from experiments and observations, are often of poor quality, with noise, miss-
ing values or other characteristics that can make further processing difficult. These data must, therefore, be “cleaned”
first. This can be done using simple approaches from traditional image processing [5, 6], such as the application of
a mean or a Gaussian filter to reduce the noise, or using histogram equalization to improve the contrast. More so-
phisticated methods, such as diffusion techniques based on partial differential equations [7, 8], as well as statistical
techniques [9, 10], are also an option.

As an example, consider the images in Fig. 2. These are part of a problem to understand the Richtmyer-Meshkov
instability [11] that results when an impulsive acceleration is applied to the interface separating two fluids of different
densities, for example, as a result of a shock wave striking the interface perpendicularly. Such instabilities arise
in diverse situations such as supernovas, oceans, and supersonic combustion, and are, therefore, the subject of much
research. To understand what happens to the fluids over time, scientists have been using computer simulations to model
the instability. Our analysis task in this problem was code validation, that is, we wanted to compare the simulations
with experiments. The image in the left panel of Fig. 2 is obtained using planar laser-induced fluorescence (PLIF)
imagery in an experimental setup where the interface between a column of acetone/air mixture on the top of a shock
tube and a column of sulphur hexachloride at the bottom is perturbed by a shock wave at Mach 1.3 [12].

To compare the experiments with the simulations, we considered an approach that first identified the mushroom-
shaped structures in the data, extracted characteristics for these structures, such as the height and width of the mush-
rooms, and then performed the comparison using these characteristics [13]. However, extracting the mushroom-shaped
structures is difficult as the noise in the image (in the form of vertical lines) is as strong as the signal, especially in
the low-contrast regions of the image. To reduce the noise, we borrowed an idea from restoration of archival films,

FIG. 2: Reducing domain-specific noise in images from experiments of Richtmyer-Meshkov instability. Left: original
image; right: after reducing the noise that appears as vertical lines in the image.
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which are often corrupted by line scratches. These images can be restored using model-based statistical approaches,
which first detect the lines and then reconstruct the data that have been corrupted [14, 15]. In our approach, we first
segmented the image to identify the edges using a Canny edge detector [5, 6], and then focused on the vertical lines,
performing a median filtering only on the noise segments, resulting in the image in the right panel of Fig. 2. In other
words, we essentially used a model of the noise, which appears as vertical lines, to perform local noise reduction.

As another example, consider the images in Fig. 3. On the left is a subset of an original image taken of a material
as it fragments. The lighter areas are the fragments of the material, while the darker regions represent the space or
gaps between the fragments. The goal of the analysis is to obtain statistics both for the fragments (such as their size)
and the gaps (such as their length and width). The distributions of these characteristics, in the form of histograms, are
used to provide a concise summary of each image. As we need to process several images of varying quality, we are
interested in techniques that can be automated, require few parameters, and are relatively insensitive to the values of
these parameters. A key challenge in the analysis is the rather large variation in intensity from the upper-left of the
image to the lower-right corner. In fact, the intensity in the darker gap regions at the upper-left corner is close to the
intensity of the lighter fragments at the lower-right corner. Second, some fragments, such as the ones near the bottom
of the image, have non-uniform intensity, with lighter pixels in one part and darker pixels in the other. This makes it
challenging to identify the material fragments in the image.

Our approach to solving this problem was to start by addressing the varying illumination in the image. Non-
uniform illumination can be considered a form of multiplicative noise, a problem commonly addressed using the
Retinex algorithm.This method, first proposed by Land [16], represents the intensity at each pixel in the image as
the product of the reflectance and the illuminance at that pixel. By taking the natural logarithm of the image, we
can “subtract out” the non-uniformity of the illumination. In our work, we used the multi-scale Retinex technique of
Jobson et al. [17]. LetI(x, y) represent the two-dimensional image. Then, the single-scale retinex output,R(x, y), is
defined as [18]

R(x, y) = loge[(I(x, y)]− loge[F (x, y) ∗ I(x, y)],

where the second term represents the illumination and is the convolution of the image with a Gaussian filterF of the
form

F (x, y) = K exp[−(x2 + y2)/σ2],

where

K =
∫∫

F (x, y) dx dy = 1,

and the standard deviation,σ, of the Gaussian determines the scale. The multi-scale Retinex method is a weighted
sum ofN applications of the single-scale algorithm

MSR(x, y) =
N∑

i=1

wiRi(x, y),

FIG. 3: Reducing the variation in intensity in images of fragmentation of materials. Left: original image; right: after
application of the multi-scale Retinex algorithm.
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where eachRi(x, y) is obtained using a different scaleσi and the weights sum to 1. For our images, we used two
equally weighted scales, one small withσ = 20, and the other larger, withσ = 80. The right panel in Fig. 3 shows how
the application of the multi-scale Retinex algorithm makes the illumination much more uniform across the image. We
further enhance the image using smoothing by a Gaussian filter and a minimum mean-squared error filter that reduces
the noise in the image prior to the identification of the fragments [19].

4. IDENTIFYING THE OBJECTS OF INTEREST IN THE DATA

In some problems, identifying the objects of interest is relatively easy. For example, if we are analyzing the relation-
ships between the inputs and outputs of an ensemble of simulations, then each simulation is an “object.” However,
when we want to extract statistics on fragments in an image or compare a simulation to an experiment, we first need to
identify the fragments or the structures in the simulation and experimental data that could be used for the comparison.
There are three broad categories of techniques we can use to identify the structures of interest in science data. We can
focus on the boundary of the structure, we can focus on its interior, or we can use domain specific methods. We next
describe these approaches briefly.

In problems where there is a large gradient at the boundary of the objects, it can be exploited to separate the object
from the background. For example, in Fig. 2, the mushroom-shaped objects are in black, while the background is in
gray. Thus, simple filters that calculate the gradient in thex andy directions can be applied at each pixel in the image.
A simple thresholding on the magnitude of the gradient would then identify the high-contrast pixels in the image,
which would be at the boundary, or the “edge,” of the objects [6]. However, the results are likely to be dependent on
the threshold—too low a value will identify many pixels as edge pixels while too high a value will result in gaps in
the edges. A more robust approach to edge detection is that proposed by Canny [20]; once the gradient at each pixel
has been determined, we apply a “thinning” process using non-maximal suppression, where a pixel is retained only
if its gradient is a local maximum in the direction perpendicular to the edge. Next, instead of a simple thresholding,
we use thresholding with hysteresis. All pixels with a gradient magnitude below a low threshold are dropped, while
those above a high threshold are retained. Pixels with gradient magnitude in between the two thresholds are retained
only if they can be recursively connected to a pixel above the high threshold. The effect of hysteresis thresholding is
to close gaps in the edges. Figure 4 shows the edges found using the Canny method for the problem of comparison of
experimental and simulation data for the Richtmyer-Meshov instability. The figures in the middle panel show that if
the experimental images are not de-noised (as described in Section 3), we have a large number of spurious edges that
meet the thresholding criterion.

Other commonly used edge detection techniques include the smallest univalue segment assimilating nucleas (SU-
SAN) approach [21], which considers a circular region centered at each pixel and evaluates the similarity of the center
pixel to the the rest of pixels in the region, as well as level sets, which evolve a suitably defined partial differential
equation [22].

While many edge detection techniques can be used successfully when there is a sharp gradient between the objects
of interest and the background, they often perform poorly in practice when the image has regions of low contrast,
resulting in edges with gaps or missed edges. In such cases, an alternative approach is to focus on the interior of the
objects and exploit the fact that the points in the interior tend to be similar to each other. Such region growing methods
come in many flavors [6]. In Fig. 5, we describe the use of region growing methods in two and three dimensions in the
context of the analysis of the Rayleigh-Taylor instability. This occurs when an initially perturbed interface between a
heavier fluid, which is on top of a lighter fluid, is allowed to grow under the influence of gravity. Finger-like structures
of the lighter fluid penetrate the heavier fluid in what are referred to as “bubbles,” while “spikes” of heavier fluid move
into the lighter fluid. Panel (a) in Fig. 5 shows the simulation at early time, where the heavier fluid (in red) is on top of
the lighter fluid (in blue). With time, these structures, which are initially distinct, continue to evolve. They may grow,
change shape, split, merge with surrounding structures, or shrink in size relative to other structures that grow and
overtake them. We analyzed data from two three-dimensional simulations: one, a 30 terabyte large-eddy simulation
(LES) and the other an 80 terabyte direct numerical simulation (DNS) [23, 24]. The analysis task was to identify,
count, and track the bubble and spike structures in the simulations with the goal of understanding the dynamics of
these structures.
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(a) (b) (c)

(d) (e) (f)

FIG. 4: Using the Canny edge detector to identify the mushroom-shaped structures in experimental images of
Richtmyer-Meshkov instability: (a) de-noised experimental image at early time; (b) noisy original image at mid-time;
(c) simulation output at mid-time; (d)–(f) the edges found in the images in the top row.

(a) (b) (c)

FIG. 5: Identifying the bubble and spike structures in three-dimensional simulations of Rayleigh-Taylor instability.
(a) A cube showing the three-dimensional domain with bubbles of the lighter fluid (in blue) penetrating the heavier
fluid (in red) while spikes of the heavier fluid enter the lighter fluid. (b) A two-dimensional slice of the LES data,
showing the region left over (in pink) after the application of a three-dimensional region growing algorithm from the
top and bottom. (c) The top view of a column of the three-dimensional data, showing the bubble boundary. The image
shows the height of the bubble surface from the initial fluid interface; a brighter bubble is closer to the top of the cube.

As described in [25–28], there were several challenges to the analysis of these data sets, ranging from the massive
size and distributed nature of the data, to the lack of a clear definition for the bubble and spike structures. Our solution
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approach was to first identify the bubble and spike boundaries by exploiting the density variable. Since the top fluid
has density 3 and the lower fluid has density 1, we can grow a region each from the top and the bottom of the cube
to identify the “background” or the volume of unmixed fluid. The region in the middle represents the mixed fluid
and its boundary in three dimensions is the boundary of the bubble and spike structures. We grow the top region
downward by adding pixels that are connected to the region and whose neighbors meet a high threshold criterion.
Similarly, we grow the bottom region upward by adding pixels that are connected to the region and whose neighbors
meet a low threshold criterion. At some point, when they no longer meet the threshold criteria, both the top and
bottom regions stop growing; this identifies the surface of the bubble and spike structures, a two-dimensional slice of
which is shown in Fig. 5, panel (b), where the region in pink is what remains after the top and bottom regions stop
growing.

Once the three-dimensional surfaces of the bubble and spike structures were found, we transformed the data into
two dimensions by considering the height (depth) maps that are essentially the top (bottom) view of the bubble height
(spike depth), relative to the original fluid interface. Figure 5, panel (c), shows the height of the bubble surface from
the initial fluid interface; a brighter bubble is closer to the top of the cube. We can then identify the bubbles and spikes
in these two-dimensional images by applying the region-growing method to these height-depth maps. Our goal is to
group pixels that are close to each other and of a similar height. So, we start with the highest pixel, and grow a region
around it by adding neighboring pixels that are close to the highest pixel in their intensity value (which is the height of
the bubble surface). When the region cannot grow any further, as no neighboring pixels satisfy the height constraint,
we select the highest pixel among those remaining and grow a region around it, and so on, until all pixels have been
assigned a region. The resulting regions, with their boundaries identified in red, are shown in Fig. 6, left panel, for
the DNS calculation. Since the image is obviously over-segmented, we can clean it by removing small regions and
merging those completely contained within another. This results in the cleaned image shown in the right panel. From
this, it is easy to count the number of bubbles and spikes at any time step.

Although one can apply traditional image analysis techniques in a straightforward manner to identify objects
in the data, sometimes it helps to exploit any special properties the data may have to devise a more efficient and
effective algorithm. For example, in counting the bubbles and spikes in the Rayleigh-Taylor simulations, we found
that we could exploit the values of thex andy velocities at the three-dimensional bubble and spike boundaries to
devise a fast algorithm for counting the tips of the bubbles and spikes [25, 28]. As another example of exploiting
domain information, consider the two images in Fig. 7, which are examples of bent-double galaxies from the Faint
Images of the Radio Sky at Twenty Centimeters (FIRST) survey [29]. Our analysis goal was to build a predictive
model that could differentiate between radio-emitting galaxies that had a bent-double morphology and those that
did not [30]. The astronomers had processed the data collected by the telescopes to create images of the radio sky.

FIG. 6: Identifying the bubble and spike boundaries in two dimensions by applying the region growing technique.
Left: the regions identified in a height map of the DNS calculation. The value of the pixel intensities, representing the
height of the bubble surface from the initial fluid interface, is similar for each region, but differs across regions. Right:
the same image after cleanup to merge regions that are contained within one another and to remove small regions.
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FIG. 7: Images from the Faint Images of the Radio Sky at Twenty centimeters (FIRST) survey, showing two galaxies
with bent-double morphology. The galaxies in the left and the right panels are composed of 11 and three entries in the
catalog, respectively, indicating the number of elliptic Gaussians required for accurate representation.

A large part of these images was just background noise, with occasional regions with the galaxies. To identify the
galaxies, the astronomers exploited the fact that they were composed of “blobs,” which could be approximated well
by two-dimensional elliptic Gaussians. So, they created a catalog, each entry of which was the information on each
of these Gaussians, such as the peak flux, the major and minor axes, the coordinates of the center, and the position
angle of the major axis measured in degrees counter-clockwise from North. A reconstruction of the galaxies using
the information in the elliptic Gaussians indicated that the catalog data were a good representation of the original
images.

As another example of a domain-specific approach to identifying objects of interest in the data, consider the data
shown in Fig. 8 generated as part of a three-dimensional simulation to understand turbulence in burning plasma in
tokamaks [31]. Panel (a) in Fig. 8 is the ion heat flux variable in a two-dimensional poloidal plane of the tokamak.
There are clearly visible structures in the data and our task was to identify these structures and extract statistics for
them. Since the structures are radially aligned, we explored the values of the ion heat flux on the grid points that lie
on a circle centered at the center of the “hole” (which is the magnetic axis of the tokamak). These grid points form
a flux surface. Panel (b) of Fig. 8 shows the values of the ion heat flux (in blue) on one of the flux surfaces. This
indicates that if we consider the valleys in the curve, and drop the grid points that occur at each valley, we should be
able to disconnect the structures on this flux surface. A threshold suitably selected by applying this idea to several
flux surfaces worked well to isolate the structures at early time, as shown in panel (c). However, we found that the ion
heat flux variable was quite noisy at the later time steps and the identification of the valleys became more difficult. A
solution to this problem was found when we noticed that another variable, the electrostatic potential [shown in red in
panel (b)], was far better behaved at late time and had its peaks and valleys coincident with the valleys of the ion heat
flux. Thus, we were able to exploit domain information to extract the structures of interest in a robust manner for all
time steps.

And, finally, we would be remiss if we did not mention model-based approaches to identify objects in data. Here,
we exploit a model of the objects of interest—for example, circular or rectangular objects—to extract them from
the data. We can also build models in the form of distributions. For example, a common technique for calculating a
threshold is to consider the problem as a two class problem and classify a grid point or pixel as belonging to one class
or the other by modeling the intensities as a mixture of two Gaussians. If the two classes are well separated, there
is a distinct valley in the resulting bi-modal distribution that can be selected as the threshold. However, as shown in
the left panel in Fig. 9, this valley can be difficult to determine for our problem on extracting statistics for images
of material fragmentation; there is no real valley discernible in the histogram of the image. However, we clearly see
an asymmetry in the histogram, and a threshold selected at the point of asymmetry on the left side of the histogram
works well in identifying the fragments in the image (as shown in the right panel). This threshold is also close to that
obtained using Otsu’s method [32], which considers the threshold as one that maximizes the between-class variance
derived using the histogram of the image intensity. Note that the thresholding leaves behind some stray isolated pixels,
or small groups of pixels, which must be removed by post-processing the segmented image [19].
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(a) (b)

(c)

FIG. 8: Identifying the coherent structures in the ion heat flux variable in a two-dimensional slice of a fusion simu-
lation. (a) The variable values at time step 1500. Grid points with similar colors have similar values, but the colors
themselves do not have any significance. (b) The plot of the electrostatic potential (in red, continuous line) and the
ion heat flux (in blue, dotted line) along a flux surface [the grid points that lie on a circle in the panel (a)]. (c) The
structures identified in the data, with all points in a structure assigned the same color.

5. EXTRACTING FEATURES TO REPRESENT THE OBJECTS

Once we have identified and extracted the objects of interest in the data we need to represent them using features,
which are low level measurements extracted from the data. This step is obviously very problem dependent. For ex-
ample, if we are interested in identifying galaxies with a bent-double morphology, we would extract features such as
angles between the blobs that represent a galaxy (see Fig. 11, left panel). On the other hand, if we were interested in
galaxies with a different shape, we would extract other features representative of that shape.

Identifying appropriate features that are representative of the patterns we seek in the data is not the only challenge
in feature extraction. We also need to identify features that are scale, rotation, and translation invariant as the patterns
themselves are often scale, rotation, and translation invariant. For example, in our work on comparing simulations and
experiments of Richtmyer-Meshkov instability, we compared the two by extracting statistics on the mushroom-shaped
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FIG. 9: Segmenting the image from the fragmentation of materials problem. Left: the histogram of the image; note
the asymmetry. Right: the image obtained after thresholding, with the threshold selected at the point of asymmetry.
The black pixels represent the gap region from the original image. Note the spurious pixels that must be removed by
post-processing.

structures in the data. As shown in Fig. 10, these statistics include the height of the mushroom, the width and height
of the mushroom cap, the width of the mushroom stem, and so on. However, as the resolutions of the simulation and
experimental data were different, we could not use these features directly for comparison. An alternative was to use
ratios of the primary features, which would now be independent of the scale.

Another important issue in feature extraction is that we must extract the features in a robust way; that is, the feature
values must not be sensitive to small changes in the data. For example, we initially considered using the position angle
as a feature in our work on identifying bent-double galaxies in the FIRST astronomical survey. However, one of the
astronomers pointed out that this feature was not robust (as shown in Fig. 11, right panel) since the position angle,
which is measured counter-clockwise from North, could change by a large amount with a slight change in the direction
of the elliptic Gaussian.

FIG. 10: Features representing the mushroom-shaped structures in the problem of code validation Richtmyer-
Meshkov simulations. These features include the height of the mushroom, the width and height of the mushroom
cap, and the width of the mushroom stem.
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FIG. 11: Extracting features for the problem of classification of bent-double galaxies in the FIRST astronomical
survey: left: the grouping of the blobs in the catalog (the blue circle) to identify a galaxy and extract distances and
angle features (the red triangle); right: the lack of robustness of the position angle as a feature—a small change in the
direction of an elliptic Gaussian can lead to a large change in the position angle.

6. REDUCING THE DIMENSION OF THE PROBLEM

Once the features for the objects in the data have been extracted, we can write the data set as an object by feature
matrix, where each row in the matrix corresponds to an object described by its features in the columns. The number of
features is the dimension of the problem since each object can be represented as a point in a multi-dimensional feature
space. Often, each object is described using a large number of features, which can number in the tens or hundreds.
This is especially true if the data are multi-variate; for example, multi-spectral data in remote sensing.

From a data mining viewpoint, there are several reasons why we may want to consider reducing the dimension
of a problem [1]. In some problems, we may want to identify the important variables relevant to a phenomenon
since we would like to monitor these variables to understand the phenomenon better. In the case of classification
problems, adding irrelevant features to the data can reduce the accuracy of decision tree classifiers, which could focus
on these irrelevant features if there are a few samples at a node of the tree. Also, from the viewpoint of the “curse
of dimensionality,” more samples are required to cover a high-dimensional space adequately, leading to a need for
larger training sets in classification problems and a loss in the meaning of the term “nearest neighbors” in clustering
problems. We also may need to consider the additional cost to extract, store, and use the irrelevant features, especially
since data structures for fast searches do not scale to high dimensions. The latter is especially important in problems
involving information retrieval or nearest-neighbor searches. And, finally, lower-dimensional data sets are easier to
visualize and understand.

There are two broad categories of dimension reduction algorithms commonly used in data mining—the feature
transform methods and the feature selection methods. The former transform the current set of features into another set
in a lower-dimensional space. The latter category of techniques select a subset of the current features and often are
used when we need to maintain the connection to the original features. We next discuss these methods briefly.

6.1 Feature Transform Methods

One of the most commonly used feature transform methods is principal component analysis (PCA) [33], whose vari-
ants are referred to by many names including Karhunen-Loève transform, empirical orthogonal functions, Hotelling
transform, proper orthogonal decomposition, latent semantic indexing, and singular value decomposition. The goal in
PCA is to use linear combinations of the input features to transform them into a set that is uncorrelated and where only
a few features are necessary to adequately describe the data. These derived features are called principal components.
In essence, PCA is the orthogonal projection of the data onto a lower-dimensional space such that the variance of the
projected data is maximized.

Among all the linear techniques, PCA gives the minimum mean-squared-error approximation in the reduced di-
mension space. This is good for tasks such as the compression of the data, but it does not necessarily lead to maximum
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class separability in the lower-dimension space, which can make it unsuitable for classification tasks. Furthermore,
PCA finds a linear subspace and, therefore, cannot handle data lying on nonlinear manifolds.

Several techniques have been proposed to address these deficiencies [34]. Many of these are non-linear generaliza-
tions of PCA, such as projection pursuit [35, 36], principal curves and surfaces [37, 38], and kernel PCA [39]. More
recently, there has been active research in techniques for the case where the data lie on a nonlinear manifold in the
lower-dimensional space [40]. These non-linear manifold learning techniques include methods such as Isomap, locally
linear embedding (LLE), and Laplacian eigenmaps, to name just a few. The basic idea is to identify a transformation
that preserves some quantity, such as the geodetic distance between two points in Isomap, the local neighborhood
relations in LLE, or the pairwise distance in Laplacian eigenmaps,

An interesting transform-based technique for dimension reduction is random projections [41], where the original
high-dimensional data are projected onto a lower-dimensional subspace using a random matrix whose columns have
unit length. Underlying random projections is the Johnson-Lindenstrauss lemma, which states that any set of points
of dimensionn in a Euclidean space can be embedded inO(log n/ε2) dimensions without distorting the distances
between any pair of points by more than a factor of(1±ε) for any0 < ε < 1. As the method is computationally very
efficient, it can be used prior to the application of the more compute intensive feature transform methods.

6.2 Feature Selection Methods

The idea of selecting a subset of the features arose in the machine learning community as a means of reducing the
dimension of the problem. These methods are applicable in classification and regression problems, where there is a
discrete or continuous output variable associated with each object, and the intent is to build a predictive model to
predict this variable. There are two categories of feature selection techniques—filters and wrappers.

Filter methods select important features based on how well they discriminate among the different classes. For
example, the Kullback-Leibler (KL) class separability filter [42] calculates the class separability of each feature using
the KL distance between histograms of feature values. For each feature, there is one histogram for each class. We
discretize the numeric features using

√
|D|/2 equally spaced bins, where|D| is the size of the data. The histograms

are normalized by dividing each bin count by the total number of elements to estimate the probability,pj(d = i|c = n),
that thejth feature takes a value in theith bin of the histogram given a classn. For each featurej, we can then calculate
the class separability as

∆j =
c∑

m=1

c∑
n=1

δj(m,n),

wherec is the number of classes andδj(m,n), the KL distance between histograms corresponding to classesm and
n, is given by

δj(m,n) =
b∑

i=1

pj(d = i|c = m) log
(

pj(d = i|c = m)
pj(d = i|c = n)

)
,

whereb is the number of bins in the histograms. If the histograms have little overlap—that is, the distance is large—
then the feature is a good feature and can be used to discriminate between the classes.

The chi-squared filter computes the chi-square statistics from contingency tables for every feature. These tables
have a row for every class label and the columns correspond to possible values of the feature (see Table 1, data adapted
from [43]). Numeric features are represented by histograms, so the columns of the contingency table are the histogram
bins. The chi-square statistic for featurej is

χ2
j =

∑

i

(oi − ei)2

ei
,

where the sum is over all the cells in ther× c contingency table;r is the number of rows;c is the number of columns;
oi stands for the observed value (the count of the items corresponding to the celli in the contingency table); andei is
the expected frequency of items calculated as
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TABLE 1: A 2×3 contingency table, with observed
and expected frequencies (in parentheses), of a ficti-
tious feature fl that takes three possible values (1, 2,
and 3).

Class f1=1 f1=2 f1=3 Total
0 31 (22.5) 20 (21) 11 (18.5) 62
1 14 (22.5) 22 (21) 26 (18.5) 62

Total 45 42 37 124

ei =
(column total)× (row total)

grand total

The variables are ranked by sorting them in descending order of theirχ2 statistics.
Some classification techniques also provide an indication of which features are important. For example, a stump

filter [42] is derived from a decision tree [44] by using the same process as the one used to create the root node of
the tree (hence, the name “stump”). Decision trees split the data by examining each feature and finding the split that
optimizes an impurity measure. To search for the optimal split for a numeric featurex, the feature values are sorted
(x1 < x2 < ... < xn) and all intermediate values(xi +xi+1)/2 are evaluated as possible splits using a given impurity
measure. The features are then ranked according to their optimal impurity measures. We use the Gini criterion, which
is based on finding the split that most reduces the node impurity, where the impurity is defined as follows:

LGini = 1.0−
k∑

i=1

(Li/|TL|)2, RGini = 1.0−
k∑

i=1

(Ri/|TR|)2

Impurity = (|TL| ∗ LGini + |TR| ∗RGini)/n

where|TL| and|TR| are the number of examples, andLGini andRGini are the Gini indices on the left and right sides
of the split, respectively.

In contrast to the filter methods, which are independent of the classification or regression method used subsequent
to the feature selection process, the wrapper methods incorporate the technique used to build the predictive model.
They consider candidate feature subsets, evaluate them using the classification or regression algorithm, and select the
subset that yields the most accurate results. For computational efficiency, the candidate feature subsets are selected
using a greedy algorithm. We can either start by selecting the best single feature, finding the next best feature to add,
and continuing the process of growing the subset until the accuracy of the model built using the selected features no
longer increases. Or, we can start by selecting all the features, and removing features that do not contribute to the
accuracy of the model. Since the predictive models have to be built and evaluated several times, wrapper methods are
more computationally expensive than the filter methods.

6.3 Observations on Dimension Reduction Techniques

Our experiences with dimension reduction techniques, in the context of several practical problems, have indicated
that feature selection techniques tend to work better than feature transform methods. Figure 12 illustrates some of
our results on two classification problems. In the plots, we show how the error rate for classification, obtained using
five fold cross validation repeated five times, varies when we use the topk features selected by different dimension
reduction techniques to build the classifier. The classifier used is a decision-tree-based approach [45], which creates
ensembles by introducing randomization at each node of the tree in two ways. It first randomly samples the examples
at a node and selects a fraction (we use 0.7) for further consideration. Then, for each feature, instead of sorting these
examples based on the values of the feature, it creates a histogram, evaluates the splitting criterion (we use Gini [44])
at the mid-point of each bin of the histogram, identifies the best bin, and then selects the split point randomly in this
bin. The randomization is introduced both in the sampling and in the choice of the split point. We use 10 trees in the
ensemble. The horizontal line in each plot is the error rate obtained using all the features.
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FIG. 12: The variation in the percentage error rate for classification, obtained using fivefold cross-validation repeated
five times, as a function of the topk features selected by different dimension reduction techniques. Top: the classifi-
cation of bent-double galaxies in the FIRST astronomical survey. Bottom: the classification of days with ramp events
in a wind power generation problem.

The top panel in Fig. 12 shows the results for the classification of bent-double galaxies in the FIRST survey for the
case of galaxies composed of three blobs or catalog entries. This data set is quite small, consisting of 195 examples,
with 167 bents and 28 non-bents. Each galaxy is described by 20 numeric features obtained by considering the three
Gaussians representing the three blobs.

The bottom panel in Fig. 12 shows the results for a problem involving the prediction of ramp events in wind power
generation [46]. A ramp event occurs when the wind power generation suddenly increases or decreases by a large
amount in a short time. These events make it difficult for the control room operators to schedule wind energy on the
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power grid. Our analysis task in this problem was to determine if we could use weather conditions to predict if a day
is likely to have a ramp event. In this data set, we have 731 examples representing the data for the days in 2007–2008.
The features are the daily averages of different variables—such as wind speed, wind direction, and temperature—at
three meteorological towers in the region of the wind farm. Each tower provides seven features, for a total of 21
features. Assigned to each day is a binary class variable that indicates if a ramp event exceeding 115 MW occurred in
any 1 hour interval during that day.

These plots show that the feature selection techniques (KL distance filter, stump filter, and chi-squared filter) tend
to give lower error rates than the non-linear manifold learning techniques (isomap, LLE, and Laplacian eigenmaps).
In both problems, we see that the non-linear transform methods can often give worse error rates than using all the
original features (indicated by the horizontal line). This could indicate that the data for our problems do not lie on
a non-linear manifold. The feature selection methods, especially the filter methods, are also computationally faster
than the transform methods. In addition, as they select a subset of the features, the results are interpretable, which is
important as it can provide scientific insights into the data.

In Fig. 13, we show the results of the application of random projections to a data set obtained from a simulation
of the chlorine concentration in a water distribution network [47]. The data for 166 sensors are available for 15 days
of simulation. They are collected once every 5 min, for a total of 4310 time instants. In Fig. 13, we show the results
using a subset of the data representing 5 days (1440 instants). We use one of the random matrices,R, defined in [41],
whose elementsrij are chosen from the following simple probability distribution:

rij =
√

3





+1 with probability 1/6
0 with probability 2/3
−1 with probability 1/6

The random projection is then obtained by multiplying the input matrixA, of ordern × d, which represents the
n d-dimensional data points, byR. Here,d = 166, the original dimension of the chlorine data. The plot in Fig. 13 is
obtained by considering different values ofk and evaluating the distortion resulting from the projection. The distortion
is defined as:

1
k

‖µ(x)− µ(y)‖2
‖x− y‖2
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FIG. 13: The distortion using random projection as the number of reduced dimensions is varied; the maximum,
minimum, and average distortions are the average of these quantities over 20 tries.
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whereµ(x) is the projection of the vectorx. Figure 13 shows the results of the maximum, average, and minimum
distortion as the value ofk is increased from 10 to 166. The result for each value ofk is the average over 20 random
matrices.

This plot shows that the average distortion, even when the number of reduced dimensions is small, is close to 1.0,
indicating that on an average, the distances are preserved when the points are projected onto the lower-dimensional
space. However, the maximum and minimum distortions, averaged over 20 tries, can be quite far from 1.0 when the
number of reduced dimensions is low, but reduce rapidly as this number increases. Also, the maximum and minimum
distortion in an 80-dimensional space is close to the maximum and minimum distortion using all the 166 variables.
Since the random projections can be easily obtained, they provide a simple and cost-effective way of reducing the
number of dimensions for problems where the reduced dimensional data are used in distance-based algorithms, such
as nearest-neighbor methods. The “instability” of random projections also can be exploited by considering several
random matrices for the projection and using ensemble approaches in the analysis.

7. BUILDING MODELS FROM THE DATA

The focus in data mining literature often tends to be on the process of building models, with many new algorithms and
untold number of variations on old ones being proposed for tasks such as classification, clustering, anomaly detection,
and association rules. In our experience, it is the pre-processing of the data that is done prior to the building of models
that is more critical to the success of a data mining endeavor. So, instead of focusing on any specific algorithms, we
next briefly describe the types of models that are built in scientific problems.

7.1 Scaling Laws

In some problems, where high-performance computers are used to run first principle calculations, scientists are often
interested in identifying scaling laws in their data. For example, in our problem of the analysis of large eddy and direct
numerical simulations of the Rayleigh-Taylor instability, scientists were interested in determining how the count of
the bubble and spike structures varied over time. Figure 14 shows the count of the number of bubbles with time using
different methods for the direct numerical simulation of the Rayleigh-Taylor instability [28]. The similarity of the plots

 1000

 10000

 10  100

B
ub

bl
e 

co
un

t

Time step

DNS bubble count, Magnitude XY Velocity and Segmentation Approaches

variance approach
center approach
mean approach

variance with z velocity
mean segmentation

variance segmentation

FIG. 14: The count of the number of bubbles obtained using different methods for the direct numerical simulation of
the Rayleigh-Taylor instability.
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from different methods gives greater confidence in the results. The plots also show that there are four distinct regimes
in the process of fluid mixing—an initial linear growth where the initial perturbation at the fluid interface grows in
magnitude, with the bubbles growing independent of each other; a second non-linear stage where some bubbles grow
faster than the others; a third phase of mixing transition; and the final phase of strong turbulence, leading to well-
mixed fluid. The slopes of the curves in each of these phases are important as they can be used to provide a succinct
power-law representation of the count. However, fitting power-law distributions to empirical data must be done with
care to ensure that the distribution is indeed a power-law distribution and to calculate the scale factors accurately [48].

7.2 Predictive Models

Here, the goal is to build a model from a training set consisting of objects, their features, and an output, which could
be discrete or continuous, and then use the model to predict an output for objects described by their features. If the
output is discrete, the problem is one of classification, if it is continuous, the problem is a regression problem. There
are a host of methods for building both kinds of models, ranging from classification and regression trees, support
vector machines, neural networks, locally weighted learning, and so on [49–52]. An important development in the last
decade in building more accurate predictive models has been the work in ensemble learning. Here, a trade-off is made
between the bias and variance of the models by incorporating randomization to create a series of models (that is, the
ensemble) from the same training set and then obtaining a prediction by suitably combining the predictions of these
models [53].

There are some factors that must be considered in the creation and application of predictive models. In some
problems, interpretable models, such as those generated by decision and regression trees, may be important for the
insights they provide in how they arrive at the output variable. We also have found that it is worthwhile to spend
the effort to create a high-quality training set. A large number of incorrect labels can give inaccurate results, while
an unbalanced training set, with a majority of examples from one class, can give rise to artificially high accuracy in
cross-validation results.

7.3 Descriptive Models

These models are built using clustering techniques where we use the features representing the objects to group similar
ones together. There are numerous clustering approaches, including the iterativek-means, bottom up agglomerative
methods, top-down divisive methods, graph-based approaches, and spectral methods [52, 54–58]. The results of
clustering are often dependent on the number of clusters requested and the definition of the similarity metric, which
identifies the similarity between two objects.

8. GENERATING THE DATA TO BE ANALYZED

Until the last decade or so, when we consider the different applications of data mining techniques, we find that the
analysis of the data was usually done after the data were collected. In contrast, in some fields, such as statistics, there
always has been a well-developed approach to the “design of experiments,” where much thought was given to the
collection of the data themselves [59].

As data mining techniques are being applied to a diverse set of problems, it is becoming clear that we also need to
pay attention to the process of generating the data so we can close the gap between data acquisition and model building.
There are several reasons why this is desirable. First, it may help improve the quality of the data. For example, having
data miners be involved in the generation of a training set may result in a well-balanced set, instead of one where
objects of the class of interest to the domain scientists far out number the other classes, which may be of little interest.
If new examples have to be assigned labels, and this process is time consuming or tedious, we could use data mining
techniques, such as active learning [60, 61], to judiciously identify the new examples to be labeled so that we can learn
a more accurate model using few additional examples. Other techniques that are helpful in building better training sets
include semi-supervised learning [62] or the incorporation of relevance feedback ideas from information retrieval to
evaluate the results from an initial application of the classifier.
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The second broad area where data mining techniques can help in the generation of the data is in the area of
design of computer experiments [63]. As scientists run a series or an ensemble of computer simulations for sensitivity
analysis, or uncertainty quantification, to simulate how an experiment would perform under certain conditions, to
understand the design space for the creation of new materials, they are increasingly faced with the problem of what
values to use for the input parameters to their simulations. Since the simulations are expensive, they would like to run
just a few of them. At the same time, they would like these simulations to meet certain criteria. For example, if the
goal is to explore a space of possible designs, we need to cover the space well so we can identify global optima. On
the other hand, if we are interested in seeing how an experiment will perform with certain inputs, the problem is more
localized, and we should sample the input space of the simulations so that there is enough variation in the ensemble
to account for uncertainties in the simulation and the experimental inputs. In both these cases, sampling techniques
from statistics and design of experiments are relevant. Also, we can use feature selection techniques to determine the
important inputs for use in generating the samples. In addition, code surrogates or meta-models ([1], pp. 29), which
are essentially models built using classification or regression methods, can be used to predict the output for a given set
of input parameters. Of course, the training set used to build these models must be of high quality, both in coverage
and in accuracy, for the meta-model to be truly predictive. We also observe that some of these problems can be phrased
as inverse problems where the task is to find the inputs to a simulation that lead to a desired output; here, ideas from
landscape characterization can be helpful [64].

9. SUMMARY AND CONCLUDING THOUGHTS

In this paper, we described the data mining process and, using example problems, described how the tasks in the
process are being used in the analysis of scientific data sets in a variety of domains. These techniques can be relevant
in several contexts in stochastic modeling and uncertainty quantification. These range from automating the analysis
of simulation output so that ensembles of simulations can be analyzed easily; the use of dimension reduction to
identify important variables and to map the data to a lower-dimensional space; the building of data-driven models,
both predictive and descriptive; and the generation of the data themselves. Although not explicitly mentioned in the
paper, techniques for making decisions under uncertainty have long been studied in fields that preceded data mining
under topics such as “reasoning under uncertainty” and “uncertainty in artificial intelligence”; these topics are seeing
a resurgence as scientists in various application domains exploit the abundance of data and utilize them, both for
insights and in decision support.

While data mining techniques can contribute to stochastic modeling and uncertainty quantification, we would
be remiss if we did not mention the opportunity for a two-way exchange of ideas. In particular, the approaches for
sampling a parameter space using multi-level Monte Carlo or quasi-Monte Carlo methods, the use of Gaussian process
regression and sparse grids, as well as the approaches taken to address stochasticity and uncertainty in the solution
of practical problems in science and engineering, are all worthy of further investigation for ways in which they can
enhance traditional data mining.

Finally, we end with a few notes of caution regarding the application of data mining techniques and mention some
of the current areas of active research. Scientific data mining is a careful and considered application of techniques in
close collaboration with domain scientists. It is an iterative and interactive process. The pre-processing of the data,
although time consuming, is crucial to the success of the process. While it may be tempting to do so, we do not
recommend that the techniques for the different tasks in the data mining process be blindly applied to the data. It often
helps to try different techniques to see if they give the same results. Many different fields contribute to data mining,
each providing its own perspectives and insights into a problem and a solution approach. The field of data mining
in general, and scientific data mining in particular, are actively growing to accommodate the needs of new problems
and data types. Real-time analysis of multi-variate sensor data streams, especially in the presence of concept drift,
is becoming increasingly important. The size of the data also is becoming larger and more complex, especially for
experiments and observations, where multi-variate, multi-sensor, multi-modal data are becoming the norm. In the
case of simulations, the move toward exascale systems, with their limited I/O bandwidth, is causing concern since it is
unclear if we can move all the analysis tasks in situ to avoid writing out large volumes of data. There are new analysis
problems that arise as we consider bridging the gap between data acquisition and analysis. As data mining techniques
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mature and are applied successfully to real problems, they are increasingly being considered as part of a loop in
the process of decision support, resulting in reasoning under uncertainty and uncertainty quantification becoming an
integral part of the data mining process.
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