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We consider in this paper the problem of building a fast-running approximation—also called surrogate model—of a
complex computer code. The co-kriging based surrogate model is a promising tool to build such an approximation when
the complex computer code can be run at different levels of accuracy. We present here an original approach to perform
a multi-fidelity co-kriging model which is based on a recursive formulation. We prove that the predictive mean and the
variance of the presented approach are identical to the ones of the original co-kriging model. However, our new approach
allows to obtain original results. First, closed-form formulas for the universal co-kriging predictive mean and variance
are given. Second, a fast cross-validation procedure for the multi-fidelity co-kriging model is introduced. Finally, the
proposed approach has a reduced computational complexity compared to the previous one. The multi-fidelity model is
successfully applied to emulate a hydrodynamic simulator.

KEY WORDS: uncertainty quantification, surrogate models, universal co-kriging, recursive model, fast
cross-validation, multi-fidelity computer code

1. INTRODUCTION

Computer codes are widely used in science and engineering to describe physical phenomena. Advances in physics
and computer science lead to increased complexity for the simulators. As a consequence, to perform a sensitivity
analysis, an uncertainty quantification, or an optimization based on a complex computer code, a fast approximation
of it—also called surrogate model—is built in order to avoid prohibitive computational cost. A very popular method
of build ing asurrogate model is the Gaussian process regression, also named kriging. It corresponds to a particular
class of surrogate models which makes the assumption that the response of the complex code is a realization of a
Gaussian process. This method was originally introduced in geostatistics in [1] and it was then proposed in the field
of computer experiments in [2]. During the last decades, this method has become widely used and investigated. The
reader is referred to the books [3–5] for more detail about it.

Sometimes low-fidelity versions of the computer code are available. They may be less accurate but they are com-
putationally cheap. A question of interest is how to build a surrogate model using data from simulations of multiple
levels of fidelity. Our objective is hence to build a multi-fidelity surrogate model which is able to use the information
obtained from the fast versions of the code. Such models have been presented in the literature [6], [7–11]. Besides, the
highest-fidelity output could also correspond to field data and the low-fidelity ones could be obtained from physical
models. In such case, the suggested methodology can be used in the context of validation (see [8, 12, 13]). Further-
more, in our framework the cheap code versions are not considered as computationally negligible. Therefore, they
cannot be run intensively and considered as known as in [10].
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The first multi-fidelity model proposed in [6] is based on a linear regression formulation. Then this model is
improved in [11] by using a Bayes linear formulation. The reader is referred to [14] for further detail about the Bayes
linear approach. The methods suggested in [6, 11] have the strength to be relatively computationally cheap but as
they are based on a linear regression formulation, they could suffer from a lack of accuracy. Another approach is to
use an extension of kriging for multiple response models which is called co-kriging. The idea is implemented in [7],
which presents a co-kriging model based on an autoregressive relation between the different code levels. This method
turns out to be very efficient and it has been applied and extended significantly. In particular, the use of co-kriging for
multi-fidelity optimization is presented in [9] and a Bayesian formulation is proposed in [10].

The strength of the co-kriging model is that it gives very good predictive models but it is often computationally
expensive, especially when the number of simulations is large. Furthermore, large data sets can generate problems such
as ill-conditioned covariance matrices. These problems are known for kriging but they become even more difficult for
co-kriging since the total number of observations is the sum of the observations at all code levels.

In this paper, we adopt a new approach for multi-fidelity surrogate modeling which uses a co-kriging model but
with an original recursive formulation. In fact, our model is able to build as-level co-kriging model by buildings
independent krigings. An important property of this model is that it provides predictive mean and variance identical
to the ones presented in [7]. However, our approach significantly reduces the complexity of the model since it divides
the whole set of simulations into groups of simulations corresponding to the ones of each level. Therefore, we will
haves submatrices to invert which is less expensive and ill-conditioned than a large one and the estimation of the
parameters can be performed separately (Section 2.3).

Furthermore, a strength of our approach is that it allows to extend classical results of kriging to the considered co-
kriging model. The two original results presented in our paper are the following ones: First, closed-form expressions
for the universal co-kriging predictive mean and variance are given (Section 4). Second, the fast cross-validation
method proposed in [15] is extended to the multi-fidelity co-kriging model (Section 5). Finally, we illustrate these
results in a complex hydrodynamic simulator (Section 6).

2. MULTI-FIDELITY GAUSSIAN PROCESS REGRESSION

In Subsection 2.1, we briefly present the approach to build a multi-fidelity model suggested in [7] that uses a co-
kriging model. In Subsection 2.2, we detail our recursive approach to build such a model. The recursive formulation
of the multi-fidelity model is the first novelty of this paper. We will see in the next sections that the new formulation
allows us to find original results about the co-kriging model and to reduce its computational complexity.

2.1 The Classical Autoregressive Model

Let us suppose that we haves levels of code(zt(x))t=1,...,s sorted by increasing order of fidelity and modeled by
Gaussian processes(Zt(x))t=1,...,s, x ∈ U ⊂ Rd. x is ad-dimensional vector representing the input variables of the
computer codes andU is the input parameter space. We hence consider thatzs(x) is the most accurate and costly
code that we want to surrogate and(zt(x))t=1,...,s−1 are cheaper versions of it withz1(x) the less accurate one. We
consider the following autoregressive model witht = 2, . . . , s:





Zt(x) = ρt−1(x)Zt−1(x) + δt(x),
Zt−1(x) ⊥ δt(x),
ρt−1(x) = gT

t−1(x)βρt−1 ,
(1)

where
δt(x) ∼ GP(fT

t (x)βt, σ
2
t rt(x, x′)), (2)

and
Z1(x) ∼ GP(fT

1 (x)β1, σ
2
1r1(x, x′)). (3)

Here,T stands for the transpose,⊥ denotes the independence relationship,GP stands for Gaussian Process,gt−1(x)
is a vector ofqt−1 regression functions,ft(x) is a vector ofpt regression functions,rt(x, x′) is a correlation function,
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βt is apt-dimensional vector,βρt−1 is aqt−1-dimensional vector, andσ2
t is a positive real number. Since we suppose

that the responses are realizations of Gaussian processes, the multi-fidelity model can be built by conditioning by the
known responses of the codes at the different levels.

The previous model comes from the article [7]. It is induced by the following assumption:∀x ∈ U ; if we know
Zt−1(x), nothing more can be learned aboutZt(x) from Zt−1(x′) for x 6= x′. It should be noticed that this Markov
property does not imply constant adjustment coefficients(ρt−1(x))t=2,...,s. Indeed, we have for allt = 2, . . . , s:

ρt−1(x) =
cov (Zt(x), Zt−1(x))

var (Zt−1(x))
.

However, in the model presented in [7], the adjustment parameters(ρt(x))t=2,...,s are constant. We show in a practical
application (Section 6) that the extension to(ρt(x))t=2,...,s depending onx is worthwhile.

Let us considerZ(s) = (ZT
1 , . . . ,ZT

s )T the Gaussian vector containing the values of the random processes
(Zt(x))t=1,...,s at the points of the designs of experiments (finite subsets ofU ) (Dt)t=1,...,s with Ds ⊆ Ds−1 ⊆
· · · ⊆ D1. We denote byz(s) = (zT

1 , . . . , zT
s )T the vector containing the values of(zt(x))t=1,...,s at the points in

(Dt)t=1,...,s. The nested property for the designs of experiments is not necessary to build the model but it allows
for a simple estimation of the model parameters. Since the codes are sorted in increasing order of fidelity it is not
an unreasonable constraint for practical applications. By denotingβ = (βT

1 , . . . , βT
s )T the trend parameters,βρ =

(βT
ρ1

, . . . , βT
ρs−1

)T the adjustment parameters, andσ2 = (σ2
1, . . . , σ

2
s) the variance parameters, we have for any

x ∈ U :
[Zs(x)|Z(s) = z(s),β, βρ,σ2] ∼ N (

mZs(x), s2
Zs

(x)
)
,

where
mZs(x) = h(s)(x)T β + ts(x)T (V (s))−1(z(s) −H(s)β), (4)

and
s2

Zs
(x) = v2

Zs
(x)− ts(x)T (V (s))−1ts(x). (5)

The Gaussian process regression meanmZs(x) is the predictive model of the highest fidelity responsezs(x) which
is built with the known responses of all code levelsz(s). The variances2

Zs
(x) represents the predictive mean squared

error of the model.
The matrixV (s) is the covariance matrix of the Gaussian vectorZ(s), the vectorts(x) is the vector of covariances

betweenZs(x) andZ(s), H(s)β is the mean ofZ(s), h(s)(x)T β is the mean ofZs(x), andv2
Zs

(x) is the variance of
Zs(x). All these terms can be expressed in terms of the experience vector at levelt (6) and of the covariance between
Zt(x) andZt′(x′) (7)

h(t)(x)T =

((
t−1∏

i=1

ρi(x)

)
fT
1 (x),

(
t−1∏

i=2

ρi(x)

)
fT
2 (x), . . . , ρt−1(x)fT

t−1(x), fT
t (x)

)
, (6)

cov(Zt(x), Zt′(x′)|σ2, β,βρ) =

(
t−1∏

i=t′
ρi(x)

)
cov(Zt′(x), Zt′(x′)|σ2, β,βρ), ∀t > t′, (7)

and

cov(Zt(x), Zt(x′)|σ2, β, βρ) =
t∑

j=1

σ2
j




t−1∏

i=j

ρi(x)ρi(x′)


 rj(x, x′). (8)

Furthermore, we have

H(s) =




[H(s)]1,1 . . . [H(s)]1,s

...
. . .

...
[H(s)]s,1 . . . [H(s)]s,s


 ,

where[H(s)]i,j is ani × pj matrix given by
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[H(s)]i,j =




i−1⊙

k=j

ρk(Di)1T
pj


¯ fT

j (Di),

where1pj is apj-vector of ones,̄ stands for the element by element matrix product,ρk(Di) is the vector containing

the values ofρk(x) for x ∈ Di and we use the convention
(⊙i−1

k=i ρk(Di)1T
pj

)
= 1ni1

T
pj

.

Remark. If the cheap codes at levels1, . . . , t, t < s, are computationally negligible, they can be considered as
perfectly known and integrated into the regression functions(fi(x))i=1,...,t.

2.2 Recursive Multi-Fidelity Model

In this section, we present the new recursive formulation of the multi-fidelity model. Let us consider the following
model fort = 2, . . . , s: 




Zt(x) = ρt−1(x)Z̃t−1(x) + δt(x),

Z̃t−1(x) ⊥ δt(x),
ρt−1(x) = gT

t−1(x)βρt−1 ,

(9)

whereZ̃t−1(x) is a Gaussian process with distribution[Zt−1(x)|Z(t−1) = z(t−1), βt−1,βρt−2 , σ
2
t−1], δt(x) is a

Gaussian process with distribution (2) andDs ⊆ Ds−1 ⊆ · · · ⊆ D1. The unique difference with the previous model
is that we expressZt(x) (the Gaussian process modeling the response at levelt) as a function of the Gaussian process
Zt−1(x) conditioned by the valuesz(t−1) = (z1, . . . , zt−1) at points in the experimental design sets(Di)i=1,...,t−1.
As in the previous model, the nested property for the experimental design sets is assumed because it allows for efficient
estimations of the model parameters but it is not required to derive the predictive distribution. We have fort = 2, . . . , s
and forx ∈ U : [

Zt(x)|Z(t) = z(t), βt, βρt−1 ,σ
2
t

]
∼ N (

µZt(x), s2
Zt

(x)
)
, (10)

where
µZt(x) = ρt−1(x)µZt−1(x) + fT

t (x)βt + rT
t (x)R−1

t (zt − ρt−1(Dt)¯ zt−1(Dt)− Ftβt) , (11)

and
σ2

Zt
(x) = ρ2

t−1(x)σ2
Zt−1

(x) + σ2
t

(
1− rT

t (x)R−1
t rt(x)

)
. (12)

Rt is the correlation matrixRt = (rt(x, x′))x,x′∈Dt , rT
t (x) is the correlation vectorrT

t (x) = (rt(x, x′))x′∈Dt ,
zt(Dt−1) the vector containing the known values ofZt(x) at points inDt−1, andFt is the experience matrix contain-
ing the values offt(x)T onDt.

The meanµZt(x) is the surrogate model of the response at levelt, 1 ≤ t ≤ s, taking into account the known
values of thet first levels of responses(zi)i=1,...,t and the varianceσ2

Zt
(x) represents the mean squared error of this

model. The mean and the variance of the Gaussian process regression at levelt being expressed in function of the
ones of levelt − 1, we have a recursive multi-fidelity metamodel. Furthermore, in this new formulation, it is clearly
emphasized that the mean of the predictive distribution does not depend on the variance parameters(σ2

t )t=1,...,s. This
is a classical result of kriging which states that for covariance kernels of the formk(x, x′) = σ2r(x, x′), the mean
of the kriging model is independent ofσ2. Another important strength of the recursive formulation is that contrary
to the formulation suggested in [7], once the multi-fidelity model is built, it provides the surrogate models of all the
responses(zt(x))t=1...,s.

We have the following proposition.

Proposition 1. Let us consider nested designs of experiments(Dt)t=1,...,s, i.e.,Ds ⊆ Ds−1 ⊆ · · · ⊆ D1. We have
the following equalities:

µZs(x) = mZs(x),
σ2

Zs
(x) = s2

Zs
(x),
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whereµZs
(x) andmZs

(x) are defined in (11) and (4) andσ2
Zs

(x) ands2
Zs

(x) are defined in (12) and (5).
The proof of the proposition is given in Appendix A.1. It shows that the model presented in [7] and the recursive

model (9) have the same predictive Gaussian distribution. Our objective in the next sections is to show that the
new formulation (9) has several advantages compared to the one of [7]. First, its computational complexity is lower
(Section 2.3); second, it provides closed-form expressions for the universal co-kriging mean and variance contrarily
to [7] (Section 4); third, it makes it possible to implement a fast cross-validation procedure (Section 5).

2.3 Complexity Analysis

The computational cost is dominated by the inversion of the covariance matrices. In the original approach proposed in
[7] one has to invert the matrixVs of size

∑s
i=1 ni ×

∑s
i=1 ni whereni = |Di| denotes the number of observations

at leveli = 1, . . . , s.
Our recursive formulation shows that building as-level co-kriging is equivalent to builds consecutive krigings.

This implies a reduction of the model complexity. Indeed, the inversion ofs matrices(Rt)t=1,...,s of size (nt ×
nt)t=1,...,s wherent corresponds to the size of the vectorzt at levelt = 1, . . . , s is less expensive than the inversion
of the matrixVs of size

∑s
i=1 ni×

∑s
i=1 ni. We also reduce the memory cost since storing thes matrices(Rt)t=1,...,s

requires less memory than storing the matrixVs. Finally, we note that the model with the recursive formulation is more
interpretable since we can deduce the impact of each level of response into the model error through(σ2

Zt
(x))t=1,...,s.

3. PARAMETER ESTIMATION

We deal in this section with the estimation of the model parameters. First, we describe the posterior distribution of
ψ = (β, βρ,σ2) given the correlation kernels(rt(x, x′))t=1,...,s in Section 3.1. Then, we describe the considered
method to estimate(rt(x, x′))t=1,...,s in Section 3.2.

3.1 Bayesian Estimation of Parameters

We present in this section a Bayesian estimation of the parameterψ = (β, βρ,σ2) focusing on conjugate and non-
informative distributions for the priors. This allows us to obtain closed-form expressions for the estimates of the
parameters. Furthermore, from the non-informative case, we can obtain the estimates given by a maximum likeli-
hood method. The presented formulas can hence be used in a frequentist approach. We note that the recursive for-
mulation and the nested property of the experimental designs allow to separate the estimations of the parameters
(βt,βρt−1 , σ

2
t )t=2,...,s and(β1,σ

2
1).

We address two cases in this section:

• Case (i): All the priors are informative

• Case (ii): All the priors are non-informative

It is of course possible to address the case of a mixture of informative and non-informative priors. For the non-
informative case (ii), we use the “Jeffreys priors” [16]:

p(β1|σ2
1) ∝ 1, p(σ2

1) ∝
1
σ2

1

, p(βρt−1 , βt|z(t−1),σ2
t ) ∝ 1, p(σ2

t |z(t−1)) ∝ 1
σ2

t

, (13)

wheret = 2, . . . , s. For the informative case (i), we consider the following conjugate prior distributions:

[β1|σ2
1] ∼ Np1(b1, σ

2
1W1),

[βρt−1 , βt|z(t−1),σ2
t ] ∼ Nqt−1+pt

(
bt =

(
bρ
t−1

bβ
t

)
, σ2

t Vt = σ2
t

(
Wρ

t−1 0
0 Wβ

t

))
,

[σ2
1] ∼ IG(α1, γ1), [σ2

t |z(t−1)] ∼ IG(αt, γt),
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with b1 a vector of sizep1, bρ
t−1 a vector of sizeqt−1, bβ

t a vector of sizept, W1 a p1 × p1 a correlation matrix,

Wρ
t−1 a qt−1 × qt−1 correlation matrix,Wβ

t a pt × pt correlation matrix,α1,γ1, αt, γt > 0, andIG stands for the
inverse Gamma distribution. The choice of conjugate Gaussian-inverse-Gamma priors is classic in the literature to
perform Bayesian inference of multivariate Gaussian distribution (see [4]). These informative priors allow the user to
prescribe the prior means and variances of all parameters. Furthermore, the choice of conjugate priors allows us to
have closed-form expressions for the posterior distributions of the parameters (the reader is referred to [4] for more
detail about the calculations). Indeed, we have:

[β1|z1, σ
2
1] ∼ Np1(Σ1ν1, Σ1), [βρt−1 , βt|z(t), σ2

t ] ∼ Nqt−1+pt
(Σtνt, Σt), (14)

where, fort ≥ 2:

Σt =





[
HT

t

R−1
t

σ2
t

Ht +
W−1

t

σ2
t

]−1

(i)

[
HT

t

R−1
t

σ2
t

Ht

]−1

(ii)

, νt =





HT
t

R−1
t

σ2
t

zt +
W−1

t

σ2
t

bt (i)

HT
t

R−1
t

σ2
t

zt (ii)

, (15)

with H1 = F1 and fort > 1, Ht = [Gt−1¯ (zt−1(Dt)1T
qt−1

)Ft] whereGt−1 is the experience matrix containing the
values ofgt−1(x)T in Dt and1qt−1 is aqt−1-vector of ones. Furthermore, we have fort ≥ 2:

[σ2
t |z(t)] ∼ IG

(
at,

Qt

2

)
, (16)

where

Qt =
{

2γt + (bt − λ̂t)T (Wt + [HT
t R−1

t Ht]−1)−1(bt − λ̂t) + Q̂t (i)
Q̂t (ii)

,

with Q̂t = (zt −Htλ̂t)T R−1
t (zt −Htλ̂t) , λ̂t = (HT

t R−1
t Ht)−1HT

t R−1
t zt, and

at =





nt

2
+ αt (i)

nt − pt − qt−1

2
(ii)

,

with the conventionq0 = 0. One can note that the expression ofQt for the case(i) can be obtained thanks to the
Woodbury matrix formula [17].

We highlight that the maximum likelihood estimators for the parametersβ1 and (βρt−1 , βt) are given by the
means of the posterior distributions in the non-informative case. Furthermore, the restricted maximum likelihood
estimate of the variance parameterσ2

t can also be deduced from the posterior distribution of the Bayesian estimation
in the non-informative case and is given byσ̂2

t,REML = Qt/2at. The restricted maximum likelihood estimation is a
method which allows to reduce the bias of the maximum likelihood estimation [18].

3.2 Estimation of the Hyper-Parameters

In the previous sections, we have considered the correlation kernels(rt(x, x′))t=1,...,s as known. In practical appli-
cations, we choose these kernels in a parameterized family. Therefore, we consider kernels such thatrt(x, x′) =
rt(x, x′;θt). For t = 1, . . . , s the hyperparameterθt can be estimated by maximizing the concentrated restricted
log-likelihood [4] with respect toθt:

log (det (Rt)) + (nt − pt − qt−1) log
(
σ̂2

t,REML

)
, (17)

with the conventionq0 = 0 andσ̂2
t,REML is the restricted likelihood estimate of the varianceσ2

t (see Section 3.1). This
minimization problem has to be solved numerically.
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It is a common choice to estimate the hyperparameters by maximum likelihood [4]. It is also possible to esti-
mate the hyperparameters(θt)t=1,...,s by minimizing a loss function of a Leave-One-Out Cross-Validation procedure.

Usually, the complexity of this procedure isO
(
(
∑s

i=1 ni)
4
)

. Nonetheless, thanks to Proposition 3, it is reduced

to O (∑s
i=1 n3

i

)
since it is essentially determined by the inversions of thes matrices(Rt)t=1,...,s. Therefore, the

complexity for the estimation of(θt)t=1,...,s is substantially reduced. Furthermore, the recursive formulation of the
problem allows us to estimate the parameters(θt)t=1,...,s one at a time.

4. UNIVERSAL CO-KRIGING PREDICTIVE MEAN AND VARIANCE

We can see in Eq. (10) that the predictive distribution ofZs(x) is conditioned by the observationsz(s) and the pa-
rametersβ, βρ, andσ2. The objective of a Bayesian prediction is to integrate the uncertainty due to the parameter
estimations into the predictive distribution. Indeed, in the previous subsection, we have expressed the posterior distri-
butions of the variance parameters(σ2

t )t=1,...,s conditionally to the observations and the posterior distributions of the
trend parametersβ1 and(βρt−1 , βt)t=2,...,s conditionally to the observations and the variance parameters. Thus, using
the Bayes formula, we can easily obtain a predictive distribution only conditioned by the observations by integrating
into it the posterior distributions of the parameters.

As a result of this integration, the predictive distribution is not Gaussian. In particular, we cannot have a closed-
form expression for the predictive distribution. However, it is possible to obtain closed-form expressions for the
posterior meanE[Zs(x)|Z(s) = z(s)] and varianceVar(Zs(x)|Z(s) = z(s)).

The following proposition giving the closed-form expressions of the posterior mean and variance of the predictive
distribution only conditioned by the observations is a novelty. The proof of this proposition is based on the recursive
formulation which emphasizes the strength of this new approach. Indeed, the derivation of the posterior mean and
variance from the model suggested in [7] involves complex algebra based on the evaluation of higher crossed moments
of regression parameters and adjustment parameters and it has not been carried out anywhere as far as we know.

Proposition 2. Let us considers Gaussian processes(Zt(x))t=1,...,s andZ(s) = (Zt)t=1,...,s the Gaussian vector
containing the values of(Zt(x))t=1,...,s at points in(Dt)t=1,...,s with Ds ⊆ Ds−1 ⊆ · · · ⊆ D1. If we consider the
conditional predictive distribution in Eq. (10) and the posterior distributions of the parameters given in Eqs. (14) and
(16), then we have fort = 1, . . . , s:

E[Zt(x)|Z(t) = z(t)] = hT
t (x)Σtνt + rT

t (x)R−1
t (zt −HtΣtνt) , (18)

with hT
1 = fT

1 and fort > 1, hT
t (x) =

(
gt−1(x)TE[Zt−1(x)|Zt−1 = zt−1] fT

t (x)
)
. Furthermore, we have

Var(Zt(x)|Z(t) = z(t)) = σ̂2
ρt−1

(x)Var(Zt−1(x)|Z(t−1) = z(t−1)) +
Qt

2 (at − 1)
(
1− rT

t (x)R−1
t rT

t (x)
)

+
(
hT

t − rT
t (x)R−1

t Ht

)
Σt

(
hT

t − rT
t (x)R−1

t Ht

)T
, (19)

with σ̂2
ρt−1

(x) = ρ̂2
t−1(x) + gt−1(x)T Σt,ρgt−1(x), ρ̂t−1(x) = gt−1(x)T [Σtνt]1,...,qt−1 , andΣρ,t is the submatrix of

elements(1, . . . , qt−1)× (1, . . . , qt−1) of Σt.
The proof of Proposition 2 is given in Appendix A.2. We note that, in the mean of the predictive distribution,

the parameters have been replaced by their posterior means. Furthermore, in the variance of the predictive dis-
tribution, the variance parameter has been replaced by its posterior mean and the term

(
hT

t − rT
t (x)R−1

t Ht

)
Σt(

hT
t − rT

t (x)R−1
t Ht

)T
has been added. It represents the uncertainty due to the estimation of the regression param-

eters (including the adjustment coefficient). We call these formulas the universal co-kriging equations due to their
similarities with the well-known universal kriging equations (they are identical fors = 1).

5. FAST CROSS-VALIDATION FOR CO-KRIGING SURROGATE MODELS

The basic principle of validation is to split the experimental design set into two disjoint sets; one is used for training
and the other for monitoring the performance of the surrogate model. Cross-validation extends it by considering
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several different couples of test and training subsets. The idea is that the performances on the test sets can be used as
a proxy for the generalization error. A particular case of this method is the Leave-One-Out Cross-Validation (noted
LOO-CV) where as many test and training sets as observations are obtained by removing one observation at a time.
Another, widely used procedure is thek-cross validation where the experimental design set is partitioned intok equal
size subsets. Then, one of the subsets is used as a test set and the others are used for training. The procedure is repeated
k times such that each subset is used once as a test set. These procedures can be time-consuming for a kriging model
but it is shown in [5, 15, 19] that there are computational shortcuts. Our recursive formulation allows to extend these
ideas to co-kriging models. Furthermore, the cross-validation equations proposed in this section extend the previous
ones even fors = 1 (i.e., the classical kriging model) since they do not suppose that the regression and the variance
coefficients are known and they concern every kind of cross-validation procedures (i.e., in particular the LOO-CV
and thek-fold CV). Therefore, those parameters are re-estimated for each training set. We note that the re-estimation
of the variance coefficient is a novelty which is important since fixing this parameter can lead to huge errors for the
estimation of the cross-validation predictive variance when the number of observations is small or when the number
of points in the test set is important.

If we denote byξs the set of indices ofntest points inDs constituting the test setDtest andξt, 1 ≤ t < s, the
corresponding set ofntest indices inDt—indeed, we haveDs ⊂ Ds−1 ⊂ · · · ⊂ D1, thereforeDtest ⊂ Dt. The
nested experimental design assumption implies that, in the cross-validation procedure, if we remove a set of points
from Ds we can also remove it fromDt, 1 ≤ t ≤ s.

The following proposition gives the vectors of the cross-validation predictive errors and variances at points in the
test setDtest when we remove them from the levelsu to s whereu ≤ s. In the proposition, we consider that we are in
the non-informative case for the parameter estimation (see Section 3.1) but it can be easily extended to the informative
case presented in Section 3.1.

Notations: If ξ is a set of indices, thenA[ξ,ξ] is the submatrix of elementsξ × ξ of A, a[ξ] is the subvector of
elementsξ of a, B[−ξ] represents the matrixB in which we remove the rows of indexξ, C[−ξ,−ξ] is the submatrix of
C in which we remove the rows and columns of indexξ, andC[−ξ,ξ] is the submatrix ofC in which we remove the
rows of indexξ and keep only the columns of indexξ.

Proposition 3. Let us considers Gaussian processes(Zt(x))t=1,...,s andZ(s) = (Zt)t=1,...,s the Gaussian vector
containing the values of(Zt(x))t=1,...,s at points in(Dt)t=1,...,s with Ds ⊆ Ds−1 ⊆ · · · ⊆ D1. We noteDtest a set
made up with the points of indicesξs of Ds andξt the corresponding indices of the points inDt with 1 ≤ t ≤ s.
Furthermore, we denote byλt,−ξt , t = 1, . . . , s, the posterior mean of the regression and the adjustment parameters
(βT

ρt−1
βT

t )T processed without the observations indexed byξt. Then, if we noteεZt,ξt the errors (i.e., real values
minus predicted values) of the cross-validation procedure at levelt, u ≤ t ≤ s, when we remove the points ofDtest

from levelsu to t, we have
(
εZt,ξt − ρ̂t−1(Dtest)¯ εZt−1,ξt−1

) [
R−1

t

]
[ξt,ξt]

=
[
R−1

t (zt −Htλt,−ξt)
]
[ξt]

, (20)

with εZi,ξi = 0 wheni < u,

λt,−ξt

(
[HT

t ][−ξt]Kt[Ht][−ξt]

)
= [HT

t ][−ξt]Ktzt(Dt \Dtest),

ρ̂t−1(Dtest) = gT
t−1(Dtest)[λt,−ξt ]1,...,qt−1 and

Kt =
[
R−1

t

]
[−ξt,−ξt]

− [
R−1

t

]
[−ξt,ξt]

([
R−1

t

]
[ξt,ξt]

)−1 [
R−1

t

]
[ξt,−ξt]

. (21)

Furthermore, if we noteσ2
Zt,ξt

the variances of the corresponding cross-validation procedure, we have

σ2
Zt,ξt

= σ̂2
ρt−1,−ξt

(Dtest)¯ σ2
Zt−1,ξt−1

+ σ2
t,−ξt

diag
(([

R−1
t

]
[ξt,ξt]

)−1
)

+ Vs, (22)
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with Σρt−1,−ξt
=

[(
[HT

t ][−ξt]Kt[Ht][−ξt]

)−1
]
[1,...,qt−1,1,...,qt−1]

,

σ̂2
ρt−1,−ξt

(Dtest) = gT
t−1(Dtest)

(
Σρt−1,−ξt + [λt,−ξt ]1,...,qt−1 [λt,−ξt ]

T
1,...,qt−1

)
gt−1(Dtest),

and

σ2
t,−ξt

=

(
zt(Dt \Dtest)− [Ht][−ξt]λt,−ξt

)T
Kt

(
zt(Dt \Dtest)− [Ht][−ξt]λt,−ξt

)

nt − pt − qt−1 − ntest
, (23)

whereσ2
i,−ξi

= 0 wheni < u, ntest is the length of the index vectorξs, Ht = [Gt−1 ¯ (zt−1(Dt)1T
qt−1

) Ft] and

Vt = UT
t

(
[HT

t ][−ξt]Kt[Ht][−ξt]

)−1 Ut, (24)

with Ut =
((

[R−1
t ][ξt,ξt]

)−1 [
R−1

t Ht

]
[ξt]

)
.

We note that these equations are also valid whens = 1, i.e., for the kriging model. We hence have closed-form
expressions for the equations of ak-fold cross-validation with a re-estimation of the regression and variance parame-
ters. These expressions can be deduced from the universal co-kriging equations. The complexity of this procedure is

essentially determined by the inversion of the matrices
([

R−1
u

]
[ξu,ξu]

)
u=t,...,s

of sizentest × ntest. Furthermore, if

we suppose the parameters of variance and/or trend as known, we do not have to computeσ2
t,−ξt

and/orλt,−ξt (they
are fixed to their estimated value, i.e.,σ2

t,−ξt
= Qt/[2(at − 1)] andλt,−ξt = Σtνt; see Section 3.1) which reduces

substantially the complexity of the method. Finally, the termVs is the additive term due to the parameter estimations
in the universal co-kriging. Therefore, if the trend parameters are supposed to be known, this term is equal to 0. The
proof of Proposition 3 is given in Appendix A.3.

Remarks: We must recognize that our closed-form cross-validation formulas do not allow for the re-estimation of
the hyperparameters of the correlation functions. However, as discussed in Subsection 3.2, Proposition 3 is useful
even in that case to reduce the computational complexity of the cross-validation procedure. Furthermore, from the
cross-validation predictive errors and variances, one can compute some overall measures of error in order to assess
the relevance of the model [20].

6. ILLUSTRATION: HYDRODYNAMIC SIMULATOR

In this section we apply our co-kriging method to the hydrodynamic code “MELTEM” (see [21]). The aim of the study
is to build a prediction as accurately as possible using only a few runs of the complex code and to assess the uncertainty
of this prediction. In particular, we show the efficiency of the co-kriging model compared to the kriging one. We also
illustrate the difference between simple and universal co-kriging and the results of the LOO-CV procedure. These
illustrations are made possible and fast by the closed-form formulas for the predictive mean and variance for universal
co-kriging and by the fast cross-validation procedure described in Section 5 and 4, respectively. Finally, we show that
considering an adjustment coefficientρ1(x) depending onx can be worthwhile.

The code MELTEM simulates a second-order turbulence model for gaseous mixtures induced by Richtmyer-
Meshkov instability [21]. Two input parametersx1 andx2 are considered. They are phenomenological coefficients
used in the equations of the energy of dissipation of the turbulent flow. These two coefficients vary in the region
[0.5, 1.5]× [1.5, 2.3]. The considered code outputs, calledeps andLc, are, respectively, the dissipation factor and the
mixture characteristic length. The simulator is a finite-elements code which can be run ats = 2 levels of accuracy by
altering the finite-elements mesh. The cheap codez1(.), using a coarse mesh, takes 15 s to produce an output whereas
the expensive codez2(.), using a fine mesh, takes 8 min. We note that no prior information is available: We are hence
in the noninformative case.
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6.1 Nested Space-Filling Design

As presented in Section 2 we consider nested experimental design sets:∀t = 2, . . . , s, Dt ⊆ Dt−1. Therefore, we
have to adopt particular design strategies to uniformly spread the inputs for allDt.

We consider here another strategy for space-filling design, described in the following algorithm, which is very
simple and not time-consuming. The number of pointsnt for each designDt is prescribed by the user, as well as the
experimental design method applied to determine the coarsest gridDs used for the most expensive codezs (see [22]
for a review of different methods).

Algorithm 1.

build Ds = {x(s)
j }j=1,...,ns

with the experimental design method prescribed by the user.

for t = s to 2 do:

build designD̃t−1 with the experimental design method prescribed by the user.

for i = 1 to nt do:

find x̃
(t−1)
j ∈ D̃t−1 the closest point fromx(t)

i ∈ Dt wherej ∈ [1, nt−1].

removex̃(t−1)
j from D̃t−1.

end for

Dt−1 = D̃t−1 ∪Dt.

end for

This strategy allows us to use any space-filling design method and it does not change the experimental designDs of
the most accurate code. This is not the case for a strategy based on selection of subsets of an experimental design
for the less accurate code as presented in [7] and [9]. We hence can ensure thatDs has excellent space-filling prop-
erties. Moreover, the experimental designDt−1 being equal toD̃t−1 ∪Dt, this method ensures the nested property.
Nevertheless, it alters the properties of the cheap code designs. Although this alteration is slight in our application,
it could be much more severe in higher dimension. Indeed, in high dimension, the closest point to be removed may
be far from the point in the upper level design. In that case, it could be relevant to not remove the point of the lower
level design. Furthermore, to have good design properties for all levels, one can use the nested orthogonal array-based
Latin hypercubes presented in [23]. However, this method has constraints on the number of observations per level.

In the presented application, we considern2 = 5 points for the expensive codez2(x) andn1 = 25 points for
the cheap onez1(x). We apply the previous algorithm to buildD2 andD1 such thatD2 ⊂ D1. For the experimental
design setD2, we use a Latin-Hypercube-Sampling [24] optimized with respect to the S-optimality criterion which
maximizes the mean distance from each design point to all the other points [25]. Furthermore, the setD̃1 is built using
a maximum entropy design [26] optimized with the Fedorov-Mitchell exchange algorithm [27]. These algorithms are
implemented in the R library lhs. The obtained nested designs are shown in Fig. 1.

6.2 Multi-Fidelity Surrogate Model for the Dissipation Factor eps

We build here co-kriging models for the dissipation factoreps. First, this example is used to illustrate the efficiency
of the co-kriging method compared to the kriging in Section 6.2.1. Second, it will allow us to highlight the difference
between the simple and the universal co-kriging in Section 6.2.2.

To build the different correlation matrices, we consider a tensorized matern5/2 kernel (see [5]):

rt(x, x′) = r(x, x′; θt) = r1d(x1, x
′
1;θt,1)r1d(x2, x

′
2;θt,2), (25)

with x = (x1, x2) ∈ [0.5, 1.5]× [1.5, 2.3], θt,1,θt,2 ∈ (0, +∞) and

r1d(xi, x
′
i;θt,i) =

(
1 +

√
5
|xi − x′i|

θt,i
+

5
3

(xi − x′i)
2

θ2
t,i

)
exp

(
−
√

5
|xi − x′i|

θt,i

)
. (26)
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FIG. 1: Nested experimental design sets for the hydrodynamic application. The crosses represent then1 = 25 points
of the experimental design setD1 of the cheap code and the circles represent then2 = 5 points of the experimental
design setD2 of the expensive code.

Then, we considerg1(x) = 1, f2(x) = 1, f1(x) = 1 (see Sections 2.1 and 2.2) and the hyperparameters(θ1, θ2) are
estimated with a concentrated maximum likelihood method.

Furthermore, we build a test set of175 points uniformly spread on[0.5, 1.5]× [1.5, 2.3] to test the accuracy of the
models.

6.2.1 Comparison between Kriging and Multi-Fidelity Co-Kriging

First of all, we propose in this section a comparison between the kriging and co-kriging models when the number of
runsn2 for the expensive code varies such thatn2 = 5, 10, 15, 20, 25. For the co-kriging model, we considern1 = 25
runs for the cheap code.

To perform the comparison, we generate randomly 500 experimental design sets(D2,i, D1,i)i=1,...,500 such that
D2,i ⊂ D1,i, i = 1, . . . , 500, D1,i hasn1 points, andD2,i hasn2 points.

The accuracies of the two models are evaluated on the test set composed of 175 observations. From them, the Root

Mean Squared Error (RMSE) is computed:RMSE =
[
(1/175)

∑175
i=1(µZ2(x

test
i )− z2(xtest

i ))2
]1/2

.

Figure 2 gives the mean and the quantiles of probability 5% and 95% of the RMSE computed from the 500 sets
(D2,i, D1,i)i=1,...,500 when the number of runs for the expensive coden2 varies. In Fig. 2, we can see that the errors
converge to the same value whenn2 tends ton1. Indeed, due to the Markov property given in Section 2.1, when
D2 = D1, only the observationsz2 are taken into account. Furthermore, we can see that for small values ofn2, it is
worth considering the co-kriging model since its accuracy is significantly better than the one of the kriging model.

6.2.2 Comparison between Simple and Universal Multi-Fidelity Co-Kriging

In this section, two comparisons are performed. The first one is between kriging and co-kriging models and the
second is between simple and universal co-kriging. We remind the reader that for the simple co-kriging the trend
and adjustment parameters are considered as known, whereas for the universal one their posterior distributions are
integrated into the predictive distribution (see Section 4).
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FIG. 2: Comparison between kriging and co-kriging withn1 = 25 runs for the cheap code (500 nested design sets
have been randomly generated for eachn2). The solid line represents the averaged RMSE of the co-kriging, the dashed
line represents the averaged RMSE of the kriging, the dashed barplots represent the quantiles of probability 5% and
95% for the kriging RMSE and the solid barplots represent the quantiles of probability 5% and 95% of the co-kriging
RMSE. Co-kriging predictions are better than the ordinary kriging ones for smalln2 and they converge to the same
accuracy whenn2 tends ton1 = 25.

In this subsection, we use5 runs for the expensive codez2(x) and25 runs for the cheap codez1(x). This represents
8 min on a hexa-core processor, which is our constraint for an operational use. This is actually a toy example but in
industrial applications it is common to have a limited CPU budget on a multicore processor. Furthermore, the nested
design sets are those built in Section 6.1 and illustrated in Fig. 1 and to validate and compare our models, the 175
simulations of the expensive code are used.

Using the concentrated maximum likelihood (see Section 3.2), we have the following estimations for the corre-
lation hyperparameters:̂θ1 = (0.69, 1.20) and θ̂2 = (0.27, 1.37). According to the values of the hyperparameter
estimates, the co-kriging model is smooth since the correlation lengths are of the same order as the size of the input
parameter space. Furthermore, the estimated Pearson correlation between the two codes is82.64%, which shows that
the amount of information contained in the cheap code is substantial.

Table 1 presents the results of the parameter estimations (see Section 3.1). We see in Table 1 that the correlation
betweenβρ1 andβ2 is important which highlights the importance of taking into account the correlation between
these two coefficients for the parameter estimation. We also see that the adjustment parameterβρ1 is close to 1, which
means that the two codes are highly correlated [we note thatg1(x) = 1, i.e.,ρ1 = βρ1 ].

Figure 3 illustrates the contour plot of the kriging and co-kriging means; we can see significant differences between
the two surrogate models.

Table 2 compares the prediction accuracy of the co-kriging and the kriging models. The different coefficients are
estimated with the 175 responses of the expensive code on the test set:

• MaxAE: Maximal absolute value of the observed error.

• RMSE: Root mean squared value of the observed error.

• Q2 = 1− ||µZ2(Dtest)− z2(Dtest)||2/||µZ2(Dtest)− z̄2||2, with z̄2 = (
∑n2

i=1 z2(xtest
i ))/n2.

• RIMSE: Root of the average value of the kriging or co-kriging variance.
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TABLE 1: Application: hydrodynamic simulator. Parameter es-
timation results for the responseeps [see Eqs. (14) and (16)]

Trend coefficient Σtνt Σt/σ
2
t

β1 8.84 0.48(
βρ1

β2

) (
0.92
0.74

) (
1.98 −18.13
−18.13 165.82

)

Variance coefficient Qt 2αt

σ2
1 6.98 24

σ2
2 0.06 3
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FIG. 3: Contour plot of the kriging mean (a), the co-kriging mean (b), and the true function (c). The triangles represent
then2 = 5 points of the experimental design set of the expensive code.
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TABLE 2: Application: hydrodynamic simulator. Com-
parison between kriging and co-kriging. The co-kriging
model provides predictions significantly better than the
ones of the kriging model

Q2 RMSE MaxAE RIMSE
kriging 75.83% 0.133 0.49 0.110

co-kriging 98.01% 0.038 0.14 0.046

We can see that the difference of accuracy between the two models is large. Indeed, that one of the co-kriging model is
significantly better. Furthermore, RIMSE appears as an accurate estimation of RMSE (see Table 2). We note that the
predictive variance for the co-kriging is obtained with a simple co-kriging model. Therefore, it will be slightly larger
in the universal co-kriging case. Indeed, by computing the universal co-kriging equations, we findRIMSE = 0.058.

We can compare the RMSE obtained with the test set with the RMSE obtained with a Leave-One-Out cross-
validation procedure (see Section 5). For this procedure, we test our model onn2 = 5 validation sets obtained by
removing one observation at a time. As presented in Section 5, we can either choose to remove the observations from
z2 or from z2 andz1. The root mean squared error of the Leave-One-Out cross-validation procedure obtained by
removing observations fromz2 is RMSEz2,LOO = 4.80.10−3, whereas the one obtained by removing observations
from z2 andz1 is RMSEz1,z2,LOO = 0.10. Comparing RMSEz2,LOO and RMSEz1,z2,LOO to the RMSE obtained with
the external test set, we see that the procedure which consists in removing points fromz2 andz1 provides a better
proxy for the generalization error. Indeed, RMSEz2,LOO is a relevant proxy for the generalization error only at points
wherez1 is available. Therefore, it underestimates the error at locations wherez1 is unknown.

Figure 4 represents the mean and confidence intervals at plus or minus 1.96 times the standard deviation of the
simple and universal co-krigings for points along the vertical linex1 = 0.99 and the horizontal linex2 = 1.91
[x = (0.99, 1.91) corresponds to the coordinates of the point ofD2 in the center of the domain[0.5, 1.5]× [1.5, 2.3]
in Fig. 1]. Note that the term “ordinary” co-kriging could also be appropriate in this example sinceg1(x) = 1,
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FIG. 4: Mean and confidence intervals for the simple and the universal co-kriging. The figure on the left hand side
represents the predictions along the vertical linex1 = 0.99 and the figure on the right hand side represents the
predictions along the horizontal linex2 = 1.91. The solid black lines represent the mean of the two co-kriging models,
the dashed lines represent the confidence interval at plus or minus 1.96 times the standard deviation of the simple co-
kriging, the dotted lines represent the same confidence intervals for the universal co-kriging, the thin dashed-dotted
lines represent the empirical quantiles of order 2.5% and 97.5% estimated by a Monte-Carlo procedure with 10,000
samples.
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TABLE 3: Application: hydrodynamic
simulator. Estimations ofβ1 and σ2

1 for
the responseLc [see Eqs. (14) and (16)]

Trend coefficient Σ1ν1 Σ1/σ2
1

β1 1.26 0.97

Variance coefficient Q1 2α1

σ2
1 15.62 24

f2(x) = 1, andf1(x) = 1 do not depend onx and it is the usual term for kriging when the trend function is a constant.
In Fig. 4 on the right-hand side, we see a narrowing of the confidence band forx1 around 1.5, which corresponds to
thex1-coordinate of the upper right point ofD2 (Fig. 4), since, in the direction ofx2, the correlation hyper-parameters
length forZ1(x) andδ2(x) are large (θ1,2 = 1.20 andθ2,2 = 1.37). Moreover, as the predictive distribution for the
universal co-kriging is not Gaussian, no exact quantiles can be associated to the confidence intervals at plus or minus
1.96 times the standard deviation. In Fig. 4, we compare them with the empirical quantiles of orders 2.5% and 97.5%
estimated by a Monte Carlo procedure with 10,000 samples. These quantiles correspond to the confidence intervals
at plus or minus 1.96 times the standard deviation for a normal distribution. We see in Fig. 4 that the two confidence
intervals are very close (though it is a bit larger for the empirical ones). Therefore, the Gaussian assumption slightly
underestimates the confidence intervals.

6.3 Multi-Fidelity Surrogate Model for the Mixture Characteristic Length Lc

In this section, we build a co-kriging model for the mixture characteristic lengthLc. The aim of this example is to
highlight that it can be worth having an adjustment coefficientρ1 depending onx. We use the same training and test
sets as in the previous section and we consider a tensorized matern-5/2 kernel (25). Let us consider the two following
cases:

• Case 1:g1(x) = 1, f2(x) = 1 andf1(x) = 1,

• Case 2:gT
1 (x) = (1 x1), f2(x) = 1, andf1(x) = 1.

We have the following hyperparameter maximum likelihood estimates for the two cases:

• Case 1:̂θ1 = (0.52, 1.09) andθ̂2 = (0.03, 0.02),

• Case 2:̂θ1 = (0.52, 1.09) andθ̂2 = (0.14, 1.37).

The estimation of̂θ1 is identical in the two cases since it does not depend onρ1 and it is estimated with the same
observations. Furthermore, we can see an important difference between the estimates ofθ̂2. Indeed, they are larger in
Case 2 than in Case 1 which indicates that the model is smoother in Case 2. Table 3 presents the estimations ofβ1

andσ2
1 for the two cases (see Section 3.1).

Then, Table 4 presents the estimations ofβ2, βρ1 , andσ2
2 for Case 1, i.e., whenρ1 is constant (see Section 3.1).

Finally, Table 5 presents the estimations ofβ2, βρ1 , andσ2
2 for Case 2, i.e., whenρ1 depends onx (see Section 3.1).

We see in Table 4 that the adjustment coefficient is around 1.5 which indicates that the magnitude of the expensive
code is slightly larger than that of the cheap code. Furthermore, we see in Table 5 that if we consider an adjustment
coefficient which linearly depends onx1 [i.e., with gT

1 (x) = (1 x1)], the constant part ofρ1 is more important (it is
around 1.66) and there is a negative slope in the directionx1 (it is around−0.48). Sincex ∈ [0.5, 1.5], the averaged
value ofρ1 is 1.18 and goes from 1.42 atx1 = 0.5 to 0.94 atx1 = 1.5. We see also that the variance estimate in Case
1 (see Table 4) is much more important than the one in Case 2 (see Table 5). This is coherent with results of Table 5
(see below).

Figure 5 illustrates the contour plot of the two co-kriging models, i.e., whenρ1 is constant and whenρ1 depends
onx.
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TABLE 4: Application: hydrodynamic simulator. Estimations
of β2, βρ1 andσ2

2 for Case 1, i.e., whenρ1 is constant, for the
responseLc [see Eqs. (14) and (16)]

Trend coefficient Σ2ν2 Σ2/σ2
2(

βρ1

β2

) (
1.49
−0.26

) (
0.83 −0.79
−0.79 0.95

)

Variance coefficient Q2 2α2

σ2
2 0.01 3

TABLE 5: Application: hydrodynamic simulator. Estimations ofβ2, βρ1

andσ2
2 for Case 2, i.e., whenρ1 depends onx, for the responseLc [see

Eqs. (14) and (16)]
Trend coefficient Σ2ν2 Σ2/σ2

2

(
βρ1

β2

) 


1.66
−0.48
−0.04







2.34 −3.50 0.44
−3.50 9.18 −3.67
0.44 −3.67 2.60




Variance coefficient Q2 2α2

σ2
2 3.24.10−4 2
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FIG. 5: Contour plot of the co-kriging mean whenρ1 is constant (on the left hand side) and whenρ1 depends onx (of
the right hand side). The triangles represent then2 = 5 points of the experimental design set of the expensive code.

Furthermore, Table 6 compares the prediction accuracy of the co-kriging in the two cases. The precision is com-
puted on the test set of 175 observations.

We see that the co-kriging model in Case 2 is clearly better than the one in Case 1. Therefore, we illustrate in this
application that it can be worth considering an adjustment coefficient which is not constant contrarily to the model
presented in [7] and [9].

7. CONCLUSION

We have presented in this paper a recursive formulation for a multi-fidelity co-kriging model. This model allows us to
build surrogate models using data from simulations of different levels of fidelity.
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TABLE 6: Application: hydrodynamic simulator. Comparison
between co-kriging whenρ1 is constant (Case 1) and co-kriging
whenρ1 depends onx (Case 2). The Case 2 provides predic-
tions better than the Case 1, it is hence worthwhile to consider
an adjustment coefficient that is not constant

RMSE MaxAE
Case 1 7.26.10−3 0.23
Case 2 1.53.10−3 0.16

The strength of the suggested approach is that it considerably reduces the complexity of the co-kriging model while
preserving its predictive efficiency. Furthermore, one of the most important consequences of the recursive formulation
is that the construction of the surrogate model is equivalent to builds consecutive krigings. Consequently, we can
naturally adapt results of kriging to the co-kriging model.

First, we present a Bayesian estimation of the model parameters which provides closed-form expressions for the
parameters of the posterior distributions. We note that, from these posterior distributions, we can deduce the maximum
likelihood estimates of the parameters. Second, thanks to the joint distributions of the parameters and the recursive
formulation, we can deduce closed-form formulas for the mean and covariance of the posterior predictive distribution.
Due to their similarities with the universal kriging equations, we call these formulas the universal co-kriging equations.
Third, we present closed-form expressions for the cross-validation equations of the co-kriging surrogate model. These
expressions reduce considerably the complexity of the cross-validation procedure and are derived from the one of the
kriging model that we have extended.

The suggested model has been successfully applied to a hydrodynamic code. We also present in this application a
practical way to design the experiments of the multi-fidelity model.

From this work, three points can be investigated. The first one is the case when the experimental design sets
are not nested. In such a situation, the predictive mean and variance of the recursive multi-fidelity co-kriging model
can easily be derived. Furthermore, the parameters can be estimated recursively from the level 1 to the levels with
maximum likelihood procedures. However, there are no more closed-form expressions for the estimates and they
must be estimated jointly for each level. Moreover, the complexity of the optimization problem is controlled by the
inversion of a matrix of sizent × nt wherent is the number of observations at levelt. As far as we know, there are
no works dealing with the issue of the parameter estimation in this framework.

The second point is about the use of sequential design strategies to improve the model accuracy. Co-kriging models
are well-suited to perform sequential designs since it provides an estimate of the model mean squared error through
the predictive variance. However, in a multi-fidelity context, finding the locations to perform new simulations is not
the only point of interest. Indeed, we have also to determine at which code levels these new simulations have to be
run. Generalization of the classical kriging-based sequential design strategies can of course be envisioned. This would
require to define a strategy which allocates the new simulations on the most appropriate code level as possible. It
certainly should take into account the contribution of each code level on the model error and the time-rations between
the code levels.

The third point is the issue of computer code validation. Indeed, it is worth noticing that the highest level of
response could be field data and the lower levels could be outputs from physical models with different level of fidelity.
The presented model can be used to predict a real phenomenon from both field data and computer codes. Furthermore,
in such a case, a nugget effect can be required to model measurement errors for the field data and the presented multi-
fidelity co-kriging model can naturally integrate it. This nugget effect can also be used to deal with ill-conditioned
covariance matrices or to take into account the variability of the output of a code relying on a Monte Carlo numerical
integration.
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APPENDIX A. PROOFS

APPENDIX A.1 Proof of Proposition 1

Let us consider the co-kriging mean of the model (1) presented in [7] for at-level co-kriging witht = 2, . . . , s:

mZt
(x) = h(t)(x)T β(t) + tt(x)T (V (t))−1(z(t) −H(t)β(t)),

whereβ(t) = (βT
1 , . . . , βT

t )T , z(t) = (zT
1 , . . . , zT

t )T , andh(t)(x)T is defined in Eq. (6). We have

h(t)(x)T β(t) = ρt−1(x)

((
t−2∏

i=1

ρi(x)

)
fT
1 (x),

(
t−2∏

i=2

ρi(x)

)
fT
2 (x), . . . , fT

t−1(x)

)
β(t−1) + fT

t (x)βt,

= ρt−1(x)h(t−1)(x)T β(t−1) + fT
t (x)βt.

Then, from Eqs. (7) and (8), we have the following equality:

V (t) =




V (t−1) +




0 0

0

(
ρt−1(Dt)ρt−1(Dt)T

)¯R−1
t

σ2
t


 −W

−WT R−1
t

σ2
t




,

where¯ stands for the element by element matrix product and

W =




0(
ρt−1(Dt)1T

nt

)¯R−1
t

σ2
t


 .

Therefore, we can deduce that

tt(x)T (V (t))−1z(t) = ρt−1(x)tt−1(x)T (V (t−1))−1z(t−1) − (
ρT

t−1(Dt)
)¯ (

rT
t (x)R−1

t zt−1(Dt)
)

+ rT
t (x)R−1

t zt,

and with Eq. (6):

tt(x)T (V (t))−1H(t)β(t) = ρt−1(x)tt−1(x)T (V (t−1))−1H(t−1)β(t−1) + rT
t (x)R−1

t Ftβt.

We hence obtain the recursive relation:

mZt(x) = ρt−1(x)mZt−1(x) + fT
t (x)βt + rT

t (x)R−1
t [zt − ρt−1(Dt)¯ zt−1(Dt)− Ftβt] .

The co-kriging predictive mean of the model (9) satisfies the same recursive relation, and we havemZ1(x) = µZ1(x).
This proves the first equality of Proposition 1:

µZs(x) = mZs(x).

We follow the same guideline for the co-kriging covariance:

s2
Zt

(x, x′) = v2
Zt

(x, x′)− tTt (x)(V (t))−1tt(x′),

wherev2
Zt

(x, x′) is the covariance betweenZt(x) andZt(x′) ands2
Zt

(x, x′) is the covariance function of the condi-
tioned Gaussian process[Zt(x)|Z(t) = z(t),β, βρ,σ2] for the model (1). From Eq. (8), we can deduce the following
equality:

v2
Zt

(x, x′) = ρt−1(x)ρt−1(x′)v2
Zt−1

(x, x′) + v2
t (x, x′),
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wherev2
Zt

(x, x′) is the covariance function of the conditioned Gaussian process[Zt(x)|Z(t) = z(t),βt, βρt−1 , σ
2
t ] of

the recursive model (9). Then, from Eqs. (7) and (8), we have

tTt (x)(V (t))−1tt(x′) = ρt−1(x)ρt−1(x′)tTt−1(x)(V (t−1))−1tt−1(x′) + σ2
t r

T
t (x)R−1

t rt(x′).

Finally we can deduce the following equality:

s2
Zt

(x, x′) = ρt−1(x)ρt−1(x′)
(
v2

Zt−1
(x, x′)− tTt−1(x)(V (t−1))−1tt−1(x′)

)
+ σ2

t

(
1− rT

t (x)R−1
t rt(x′)

)
,

which is equivalent to

s2
Zt

(x, x′) = ρt−1(x)ρt−1(x′)s2
Zt−1

(x, x′) + σ2
t

(
1− rT

t (x)R−1
t rt(x′)

)
.

This is the same recursive relation as the one satisfied by the co-kriging covarianceσ2
Zt

(x, x′) of the model (9) [see
Eq. (12)]. Sinces2

Z1
(x, x′) = σ2

Z1
(x, x′), we have

σ2
Zs

(x, x′) = s2
Zs

(x, x′).

This equality withx = x′ proves the second equality of Proposition 1. 2

APPENDIX A.2 Proof of Proposition 2

Noting that the mean of the predictive distribution in equation (11) does not depend onσ2
t and thanks to the law of

total expectation, we have the following equality:

E
[
Zt(x)|Z(t) = z(t)

]
= E

[
E

[
Zt(x)|Z(t) = z(t),σ2

t ,βt, βρt−1

] ∣∣Z(t) = z(t)
]
.

From Eqs. (11) and (14), we directly deduce Eq. (18). Then, we have the following equality:

var
(
µZt(x)

∣∣∣z(t), σ2
t

)
= (hT

t (x)− rt(x)T R−1
t Ht)Σt(hT

t (x)− rt(x)T R−1
t Ht)T . (A.1)

Furthermore, from (12) and (14), we can deduce

E
[
var(Zt(x)|z(t),βt,βρt−1 , σ

2
t )

∣∣∣z(t), σ2
t

]
= σ̂2

ρt−1
(x)var(Zt−1(x)|Z(t−1)

= z(t−1), σ2
t ) + σ2

t

(
1− rT

t (x)R−1
t rT

t (x)
)
, (A.2)

whereσ̂2
ρt−1

(x) = gT
t−1(x)

(
Σt,ρ + [σtνt]1,...,qt−1 [σtνt]T1,...,qt−1

)
gt−1(x). The law of total variance states that

var(Zt(x)|z(t), σ2
t ) = E

[
var(Zt(x)|z(t), βt, βρt−1 ,σ

2
t )

∣∣∣z(t), σ2
t

]

+ var
(
E

[
Zt(x)|z(t), βt, βρt−1 ,σ

2
t

] ∣∣∣z(t), σ2
t

)
.

Thus, from Eqs. (A.1) and (A.2), we obtain

var(Zt(x)|Z(t) = z(t), σ2
t ) = σ̂2

ρt−1
(x)var(Zt−1(x)|Z(t−1) = z(t−1), σ2

t ) + σ2
t

(
1− rT

t (x)R−1
t rT

t (x)
)

+
(
hT

t − rT
t (x)R−1

t Ht

)
Σt

(
hT

t − rT
t (x)R−1

t Ht

)T
. (A.3)

Again using the law of total variance and the independence betweenE
[
Zt(x)|Z(t) = z(t), βt, βρt−1

]
andσ2

t , we
have

var(Zt(x)|z(t)) = E
[
var(Zt(x))|z(t),σ2

t

]
. (A.4)

We obtain Eq. (19) from Eq. (16) by noting that the mean of an inverse Gamma distributionIG(a, b) is b/(a− 1). 2
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APPENDIX A.3 Proof of Proposition 3

For notational convenience, let us consider thatξs is the index of thentest last points ofDs. We denote byDtest

these points. First we consider the variance and the trend parameters as fixed, i.e.,σ2
t,−ξt

= Qt/[2(at − 1)] and
λt,−ξt

= Σtνt, andVs = 0; i.e., we are in the simple co-kriging case. Thanks to the blockwise inversion formula, we
have the following equality:

R−1
s =

(
A B

BT Q−1

)
, (A.5)

with A =
(
[Rs][−ξs,−ξs]

)−1

+
(
[Rs][−ξs,−ξs]

)−1

[Rs][−ξs,ξs]Q−1 [Rs][ξs,−ξs]

(
[Rs][−ξs,−ξs]

)−1

,

BT = −Q−1 [Rs][ξs,−ξs]

(
[Rs][−ξs,−ξs]

)−1

, and

Q = [Rs][ξs,ξs] − [Rs][ξs,−ξs]

(
[Rs][−ξs,−ξs]

)−1

[Rs][−ξs,ξs] . (A.6)

We note that[Qs/2(as − 1)]Q = [Qs/2(as − 1)]
([

R−1
s

]
[ξs,ξs]

)−1

represents the covariance matrix of the points

in Dtest with respect to the covariance kernel of a Gaussian process of kernel[Qs/2(as − 1)]rs(x, x′) [which is the
one ofδs(x)] conditioned by the pointsDs \Dtest. Therefore, from the previous remark and Eq. (12), we can deduce
Eq. (22).

Furthermore, from (A.5) we have the following equality:
[
R−1

s (zs −Hsλs,−ξs)
]
[ξs]

= BT zs(Ds \Dtest) +Q−1zs(Dtest)

+ BT [HT
s ][−ξs]Σsνs +Q−1hT

s (Dtest)Σsνs.

From which we can deduce the following one:

([
R−1

s

]
[ξs,ξs]

)−1 [
R−1

s (zs −Hsλs,−ξs)
]
[ξs]

= zs(Dtest)− hT
s (Dtest)Σsνs

− [Rs][ξs,−ξs]

(
[Rs][−ξs,−ξs]

)−1

× (
zs(Ds \Dtest)− [HT

s ][−ξs]Σsνs

)
. (A.7)

From this equation and Eq. (11), we can directly deduce Eq. (20) withεZs,ξs = zs(Dtest)− µZs(Dtest).
Then, we suppose the trend and the variance parameters as unknown and we have to re-estimate them when

we remove the observations. Thanks to the parameter estimations presented in Section 3.1, we can deduce that the
estimates ofσ2

t,−ξt
andλt,−ξt when we remove observations of indexξt are given by the following equations:

λs,−ξs

(
[HT

s ]−ξsKs[Hs]−ξs

)
= [HT

s ]−ξsKszs(Ds \Dtest), (A.8)

and

σ2
s,−ξs

=
(zs(Ds \Dtest)− [Hs]−ξsλs,−ξs)

T
Ks (zs(Ds \Dtest)− [Hs]−ξsλs,−ξs)

ns − ps − qs−1 − ntest
, (A.9)

with Ks =
(
[Rs][−ξs,−ξs]

)−1

.

From the equality (A.5), we can deduce thatKs = A − BQBT from which we obtain Eq. (21). Finally, to
obtain the cross-validation equations for the universal co-kriging, we just have to estimate the following quantity [see
Eq. (19)]

(
hT

s (Dtest)T − [Rs][ξs,−ξs] Ks[Hs]−ξs

)
Σs

(
hT

s (Dtest)T − [Rs][ξs,−ξs] Ks[Hs]−ξs

)T

, (A.10)
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with Σs =
(
[HT

s ]−ξs
Ks[Hs]−ξs

)−1
. From Eq. (A.5), we can deduce the following equality:

[
R−1

s Hs

]
[ξs]

= BT [Hs]−ξs
+Q−1hT

s (Dtest)T ,

from which we can deduce the following equality:
(
hT

s (Dtest)T − [Rs][ξs,−ξs] Ks[Hs]−ξs

)
=

((
[R−1

s ][ξs,ξs]

)−1 [
R−1

s Hs

]
[ξs]

)
, (A.11)

which allows us to obtain Eq. (24) and completes the proof. 2
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