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We are concerned with the development of computationally efficient procedures for subsurface flow prediction that relies
on the characterization of subsurface formations given static (measured permeability and porosity at well locations) and
dynamic (measured produced fluid properties at well locations) data. We describe a predictive procedure in a Bayesian
framework, which uses a single-phase flow model for characterization aiming at making prediction for a two-phase flow
model. The quality of the characterization of the underlying formations is accessed through the prediction of future fluid
flow production.
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1. INTRODUCTION

It is generally accepted that permeability and porosity are two of the most important subsurface properties govern-
ing the movement and storage of the fluids. Mainly because the variation in porosity is typically at least one order
of magnitude smaller than the variation in permeability, it has been a routine assumption to take the porosity as a
deterministic constant in predictive simulations. Alternatively, others (see for example [1, 2]) have investigated pos-
sible correlations between permeability and porosity, but these are largely empirical in nature and were developed
on a case-by-case basis. Characterization of both permeability and porosity fields is a practical way of reducing the
uncertainty in the whole flow and transport pattern of the subsurface [3]. In general, the characterization is realized
through iteratively adjusting the subsurface model until it closely reproduces the available recorded dynamic and static
data [4–7]. A set of governing mathematical equations and the corresponding numerical simulations are imperative for
making the comparison possible. These equations involve several unknown functions, such as pressure, velocity, and
saturation, and are spatially and time dependent. Furthermore, the interactions between these unknowns are modeled
by nonlinear coupling appearing in the constitutive relations.

A commonly used procedure for characterizing the subsurface istracer testing(see for example [3, 8–14]). In
this procedure, one or more tracers, such as chemical or radioactive compounds, are injected into the subsurface
in order to estimate its flow pattern and storage. The tracer test data in the form of amount of produced fluids are
recorded, which is the basis for testing the validity of proposed permeability and porosity fields. It is then followed
by numerical test simulation with exact injection and extraction operations, tracer details, and boundary conditions,
etc., of the experimental setup and history matching of the simulated response with the available data at the extraction
wells. In this respect, tracer testing offers an appealing feature since its numerical simulation is relatively inexpensive
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in comparison to the nonlinear case. Specifically, solving the Darcy velocity, which considerably is the most expensive
component, occurs only one time, after which it is proceeded by solving the transport equation.

Within the statistical framework, the above subsurface characterization can be thought of as sampling the param-
eters from a probability distribution that is conditioned to the available output data. The spatially dependent nature of
the parameters makes them belong to an infinite dimensional space, which up to some numerical discretization can be
approximated by some finite-dimensional space. However, this dimension by far exceeds the dimension of the space
of the guiding measurement data. It is not surprising that a successful match between simulated and measured data
does not necessarily guarantee obtaining the exact parameters of the subsurface, thus making the characterization an
ill-posed mathematical problem in the sense that we attempt to invert a higher dimensional map whose range has a
much lower dimension.

As mentioned, even at the discretized level, the dimension of the uncertainty space may be exceptionally large, so
reduction-of-order techniques are needed to bring down the whole calculation to the extent that it becomes amenable
for computational simulations. This can be achieved by the Karhunen–Loève expansion, which allows for parametriza-
tion of the uncertainty space. The characterization is undertaken by sampling the parametric variables in the expansion.
Still, a practical way of inverting the system in the characterization needs to be elaborated properly. An alternative
to direct inversion of the system is to use implicit inverse models in a Bayesian approach to estimate permeability
and porosity of the subsurface. These parameter estimates are updated automatically in a Markov chain Monte Carlo
Method (MCMC) in response to computed sensitivity of simulated data to changes in these parameters.

Many authors studied Bayesian methods for inverse problems in reservoir modeling. We refer the reader to [15, 16]
for recent works in the study of inverse problems in applications of flow through porous media. In [15], the authors
used an intrinsically stationary Markov random field, which compares favorably to Gaussian process models and
offers some additional flexibility and computational advantages for the choice of prior for the unknown permeability
field. Through a Bayesian approach, using MCMC methods to explore the high-dimensional posterior distribution,
they investigated the characterization of an aquifer based on flow data. In contrast, [17–19] used the Karhunen–Loève
expansion [20] to parametrize the permeability field.

In practice however, MCMC can be computationally expensive, particularly for solving forward problems in
significantly correct fine grids in real flow problems. A methodology for improving the speed and efficiency of an
MCMC analysis by combining runs on different scales is presented in [21]. In their approach, by using a coarser scale,
the MCMC chain can run faster and better explore the posterior, being less likely to become stuck in local maxima.
They discussed methods for linking the coarse chain back to the original fine-scale chain of interest. The proposed
coupled MCMC runs more efficiently without sacrificing the accuracy achieved at the finer scale. In [17, 19], a two-
stage MCMC that utilizes inexpensive coarse-scale models to screen out detailed flow and transport simulations was
used to explore the posterior distribution of permeability field. In the first stage, a new proposal is first tested at the
coarse-scale model. If the proposal passes the testing at the coarse-scale model, then at the second stage the fine-scale
simulation will be run and this fine-scale run is very expensive compared to the coarse-scale run. We remark that this
procedure is closely related to the method proposed in [22, 23].

In this paper, we present a multi-stage Bayesian prediction framework for subsurface flows. To the best of our
knowledge, integration of single- and two-phase models into a predictive simulation has not been reported in the exist-
ing literature. The technique constitutes two steps, namely (1) a subsurface characterization step employing Bayesian
MCMC whose “black-box” is the tracer testing, which is governed by a single-phase flow model, and (2) a prediction
step in which the resulting subsurface characterization is used as an input in multi-phase flow model. Our final aim in
this case is to predict the entire production curves for multi-phase flows in subsurface. Instead of assuming ad-hoc cor-
relations between permeability and porosity fields, we model these fields as independent random fields. The authors
presented a preliminary study of this work in [24].

The main attractive feature of this technique lies in the efficiency of the characterization. As pointed out, the
MCMC calculation is expensive because whenever a sample of parameters is proposed, it has to be sent to the black
box to get the simulated response, which in turn is compared to the measured data. The whole MCMC can easily
require thousands of iterations before a steady state distribution is reached. Hence using a relatively simple physics
(and thus is easy to solve) in the black box is preferable due to efficiency consideration. The tracer testing model is a
very good candidate for this purpose. On the other hand, once the accepted parameters samples have been collected,
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they can be used solely for prediction. In this case, a more representative model is used, such as the multi-phase flow
model, that better reflects the actual physics of the flow and transport. Obviously, solving this model will be more
challenging, but one can manage to do this because the number of accepted samples to be used as input in it is at
most the fraction of the original MCMC iterations. The second step in the proposed technique can be thought of as
a postprocessing in which a standard Monte Carlo simulation is carried out to gather statistics of the quantities of
interest in the prediction.

We use a Metropolis–Hastings MCMC with a random walk sampler to explore the posterior distribution. Since we
explore high-dimensional posterior distribution, we implement a component-wise tuning mechanism in the two-stage
MCMC. Owing to the computational burden in the MCMC sampling, we parallelize the numerical algorithms for
solving the forward problem. Recent investigation on the use of a GPU for solving multi-phase flow problems in a
three-dimensional setting indicates a speed-up of up to 60 in comparison to the traditional serial calculation on a CPU
[25]. In the current work we exploit the advances in GPU computing by using a heterogeneous CPU–GPU system to
solve the forward problems.

We assume that we have the values of permeability and porosity at the wells, and the recorded tracer test data of
the subsurface in the form of fraction of tracer in the produced fluid-fractional flow curve at the extraction wells. Due
to economic considerations, a tracer test is frequently terminated before the tracer concentrations fall below the de-
tection limit. Therefore, we use partial fractional flow curves of the extraction wells and characterize the permeability
and porosity fields of the subsurface using the Karhunen–Loève expansion with a two-stage MCMC method. Based
on the characterization of the fields, we then run the forward problem in a two-phase flow model for the accepted re-
alizations and predict the entire production curves of the two-phase flow problem by aggregating the solutions of the
forward problem. Here the single- and two-phase forward models are solved on the same underlying field. For given
partial tracer curves, there exist many different distributions of permeability and porosity. We consider most of such
distributions through the MCMC and accurately predict an integrated response for such distributions in the two-phase
model. Numerical results indicate that the predictions are reliable, in particular our proposed technique predicts the
breakthrough times very accurately.

This paper is organized as follows. We discuss physical modeling of the problem in Section 2. In Section 3, numer-
ical models and associated methods are discussed. In Section 4, spatial priors for unknown permeability and porosity
fields are specified using the Karhunen–Loève expansion. In Section 5, we discuss a Bayesian approach for sampling
both permeability and porosity fields using a two-stage MCMC method. In Section 6, numerical experiments are pre-
sented to demonstrate the performance of the approach for characterizing subsurfaces and predicting the fractional
flow curves. Section 7 contains our conclusions.

2. PHYSICAL MODELING

We consider a heterogeneous oil reservoir that is confined in a domainΩ ⊂ R2. The reservoir is equipped with an
injection well, from which water is discharged to displace the trapped oil towards the production wells, situated on the
perimeter of the domain (see Fig. 1). The dynamics of the movement of the fluids in the reservoir is categorized as an

injection well

center well

corner well

FIG. 1: The description of the problem. The injection and extraction (or production) wells are on the perimeter.
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immiscible two-phase system with water and oil (denoted byw ando, respectively) that is incompressible. Capillary
pressure is not included in the model. Further simplifying assumptions that we use are a gravity-free environment with
no sources or sinks (injection and production are modeled through boundary conditions), the two fluids fill the pore
space and rigid porous media. Then, the Darcy’s law with a statement of conservation of mass allow us to write the
governing equations of the flow as

∇ · v = 0, where v = −λ(s)k(x)∇p, (1)

and

φ(x)
∂s

∂t
+∇ · (f(s)v) = 0, (2)

wherev is the total Darcy velocity(vw + vo), vj , j = w, o is the phase velocity,s is the water saturation,k is the
permeability, andφ is the porosity. The total mobilityλ(s) and the flux functionf(s) are respectively given by

λ(s) =
krw

µw
+

kro

µo
, f(s) =

krw(s)/µw

λ(s)
, (3)

wherekrj , j = w, o, is the relative permeability of the phasej [26]. In the numerical implementation, all the wells
are modeled through appropriate boundary conditions. More specifically, we use the boundary conditionsv ·n = gN

on the Neumann boundaryΓN andp = 0 on the Dirichlet boundaryΓD, with ΓN

⋃
ΓD = ∂Ω for a given fluxgN .

Sampling the permeability and porosity of the reservoir employs the tracer testing, which is governed by the
single-phase flow model, represented by (1) and (2), withλ(s) = 1 andf(s) = s, wheres is the concentration of the
tracer in the fluid. The tracer test data serving as the guiding measurement are modeled by the partial fractional curves.
For each production boundary the fractional flowF (t) is defined as the fraction of tracer chemical in the produced
fluid, i.e.,

F (t) = 1−
∫

∂Ωout
vnf(s) dl∫

∂Ωout
vn dl

, (4)

where∂Ωout denotes outflow boundary,vn is normal velocity field, andt in dimensionless time PVI, which is com-
puted as

PVI =
∫ T

0

Vp
−1

∫

∂Ωout

vn dl dτ, (5)

whereVp is the total pore-volume of the reservoir andT denotes the time taken for injection of water.

3. NUMERICAL MODELING

At the core of the numerical approximation is the partition ofΩ into non-overlapping rectangular elements ofIi,j . Let
xi := 0.5(2i− 1)hx, yj := 0.5(2j− 1)hy, xi±1/2 := xi± 0.5hx andyj±1/2 := yj ± 0.5hy, wherei = 1, . . . , N and
j = 1, . . . , M with N andM denote the number of elements inx- andy- direction, respectively, andhx andhy denote
the sizes of the element inx- andy-direction, respectively. We then defineIi,j := [xi−1/2, xi+1/2]× [yj−1/2, yj+1/2].

To solve the models, we employ an operator splitting technique to compute the solutions of the pressure equa-
tion (1) and saturation (2), which are coupled together by the Darcy velocityv and water saturations. Typically,
computational efficiency dictates the use of larger time steps to compute the pressure equation (1). The splitting tech-
nique allows time steps used in the pressure calculation that are longer than the steps allowed under an appropriate
CFL condition in the saturation calculation. We thus introduce a variable time step∆ts for the saturation calcula-
tion, and a longer time step∆tp for the pressure calculation. The pressure and the Darcy velocity are approximated
at timestm = m∆tp, wherem = 0, 1, . . .; the saturation is approximated at timestm,k = tm +

∑k
i=1 (∆ts)i for

tm < tm,k ≤ tm+1. Here, we need to specify the water saturation att = 0. For further details on the operator splitting
procedure, we refer the reader to [27–29]. We remark that one could also take advantage of the linearity of the trans-
port equation in the single-phase model by using accurate, Lagrangian solution methods that do not have restrictions
on the time step size (see, e.g., [30]).
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In the simulation of (1) and (2), maintaining the divergence-free property of the Darcy velocity is very important.
This is precisely the reason for employing a mixed finite element method to solve (1). To this end, letUg =

{
v ∈

H(div, Ω) : v · n|ΓN
= g

}
and we setUh,g ⊂ Ug andWh ⊂ L2(Ω) to be the lowest-order Raviart–Thomas

spaces [31] over rectangles. The mixed finite element approximation (1) consists of finding(vh, ph) ∈ Uh,gN
×Wh

such that
(λ−1(sh)k−1(x)vh,u)− (ph,∇ · u) = 0, ∀u ∈ Uh,0,

(∇.vh, w) = 0, ∀w ∈ Wh.
(6)

The resulting algebraic system is then efficiently solved in a GPU by the conjugate gradient method preconditioned
by the algebraic multi-grid scheme [32]. The approximate pressureph is computed at the center of each cellIi,j while
the velocityvh is computed at the four edges of the cellIi,j .

To solve (2), we use a conservative second-order, high-resolution central scheme, which can be viewed as a
generalization of Kurganov–Tadmor central scheme [33]. Our version of the Kurganov–Tadmor scheme for the case
of variable porosity fields is described in detail in Appendix A for conservation laws in one space dimension. The
design and implementation of a multi-dimensional version of this scheme is outside the scope of the work presented
here and will appear elsewhere. We refer the reader to [25, 34] for further discussion on the numerical schemes used
in solving the forward problem possibly taking advantage of GPU computing.

4. PARAMETRIZATION OF UNCERTAINTY

As the uncertainty space describing the permeability and porosity can be exceptionally large, a reduction of the space
dimension is a step that must be performed for computationally feasible simulations. The Karhunen–Loève (KL)
expansion [20, 35] allows for the parametrization of the uncertainty space and thereby leads to the desired reduction.
We note that this reduction technique has been applied within Bayesian MCMC in [16–19, 36].

The KL expansion relies on a basic prior information on the structure of the permeability and porosity fields that
reasonably match the actual reservoir. In practice, however, this is hindered by the very limited information available
to use. A standard assumption in geostatistics is to model the permeability to follow a log-normal distribution [37],
i.e., log[k(x,ω)] = Y k(x, ω), wherex ∈ Ω ⊂ R2, andω is a random element in a probability space, andY k(x, ω)
is a field possessing a Gaussian distribution and a covariance function

R(x1, x2) = σ2
Y exp

(
−1

2
|L−1(x1 − x2)|2

)
, (7)

where,L = [Lx Ly] with Lx = [Lxx Lyx]> andLy = [Lxy Lyy]> with the correlation lengthsLij , wherei andj
denotex- andy-direction, respectively.

We now briefly describe the essentials of the KL expansion. SupposeY k(x, ω) is a second-order stochastic
process, that is,Y k(x, ω) ∈ L2(Ω) with a probability of one. We will assume thatE[Y k(x, ω)] = 0. Given an
arbitrary orthonormal basis{ϕi} in L2, we can expandY k(x,ω) as

Y k(x,ω) =
∞∑

i=1

Y k
i (ω)ϕi(x), with Y k

i (ω) =
∫

Ω

Y k(x, ω)ϕi(x) dx (8)

being functions of a random variable. We are interested in the special basis inL2(Ω) that allowsY k
i to be uncorrelated,

E[Y k
i Y k

j ] = 0 for all i 6= j. Because by definitionR(x1,x2) = E[Y k(x1)Y k(x2)], such basis functions{ϕi} satisfy

E[Y k
i Y k

j ] =
∫

Ω

ϕi(x1) dx1

∫

Ω

R(x1,x2)ϕj(x2) dx2 = 0, i 6= j. (9)

Completeness ofL2(Ω) implies thatϕi(x) is an eigenfunction of integral equation involvingR(x1, x2) expressed as
∫

Ω

R(x1, x2)ϕi(x2) dx2 = λiϕi(x1), i = 1, 2, . . . (10)
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whereλi = E[(Y k
i )2] > 0. Denotingθk

i = Y k
i /
√

λi, thenθk
i satisfiesE(θk

i ) = 0 andE(θk
i θk

j ) = δij , and thus

Y k(x, ω) =
∞∑

i=1

√
λiθ

k
i (ω)ϕi(x), (11)

whereϕi andλi satisfy (10). We assume that eigenvaluesλi are ordered so thatλ1 ≥ λ2 ≥ . . . . The expansion (11) is
called the Karhunen–Lòeve expansion. In (10), theL2 basis functionsϕi(x) are deterministic and resolve the spatial
dependence of the permeability field. The uncertainty is represented by the scalar random variablesθk

i . In general, we
need to keep only the leading order terms (quantified by the magnitude ofλi) and still capture most of the energy of
the stochastic processY k(x, ω). For aNk-term KL expansion

Y k
Nk

=
Nk∑

i=1

√
λiθ

k
i ϕi. (12)

If λi decays very fast, then the truncated KL expansion would be a good approximation of the stochastic process in
theL2 sense.

We remark that one could use a different covariance function, such as for example,

R(x1, x2) = σ2
Y exp

(
−|x1 − x2|

Lx
− |y1 − y2|

Ly

)
. (13)

However, the eigenvalues of KL expansion may decay algebraically [17, 38]. To have a good approximation for (11),
we must add more terms in the truncated KL expansion (12). This will increase the parameter space dimension, and
thus make the sampling of permeability and porosity more expensive.

We first solve the eigenvalue problem (10) numerically [typically in coarser grids than those used for the approxi-
mation of the (1) and (2)], and obtain the eigenpairs(λi, ϕi). Hence, the truncated KL expansion should approximate
the stochastic processY k(x, ω) fairly well. Therefore, we can sampleY k(x, ω) from the truncated KL expansion
(12) by generating Gaussian random variablesθk

i .
Moreover, suppose the permeability field is known atnw locations. Then, we can incorporate these permeability

values in the KL expansion by setting
Nk∑

i=1

√
λiθ

k
i ϕi(xj) = wj , (14)

wherewj are constants that correspond to known permeabilities at locationsxj , wherej = 1, . . . , nw . Now, we
propose(Nk − nw) θks and compute the rest ofnw θks by solving the linear system (14).

With respect to the porosity field, we make use of the standard assumption that the porosity exhibits a similar
spatial correlation structure to the permeability. In turn, this allows us to employ the Karhunen–Loève basis func-
tions (10). As in the KL expansion for the permeability field, we use aNφ-term KL expansion

Y φ
Nφ

(x, ω) =
Nφ∑

i=1

√
λiθ

φ
i (ω)ϕi(x). (15)

Then we define the porosity as

φ(x) =
φmin + φmaxe

Y φ
Nφ

1 + e
Y φ

Nφ

, φmin andφmax ∈ (0, 1), (16)

whereφmin andφmax are the deterministic lower and upper limits of the porosity of the reservoir. This definition
ensures that the porosity not only shares the same correlation structure with the permeability, but also falls between
φmin andφmax.
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5. A TWO-STAGE BAYESIAN MCMC

As alluded to earlier, we want to sample the permeability and porosity fields conditioned on the available fractional
flow dataFm. This is translated into sampling from the conditional distributionP (ψ|Fm), whereψ = [θk θφ]
with θk andθφ vectors containing the random coefficients in the KL expansions. According to Bayes’ theorem this
distribution satisfies the proportionality relation

P (ψ|Fm) ∝ P (Fm|ψ)P (ψ), (17)

whereP (Fm|ψ) represents the likelihood function (which requires the forward solution of the single-phase flow) and
P (ψ) is the prior distribution ofψ. The normalizing constant in this expression is not important, because we use an
iterative updating procedure. Although a more general error model can be used in the simulations, we assume that the
likelihood function follows a Gaussian distribution, i.e.,

P (Fm|ψ) ∝ exp
(
− (Fm − Fψ)>Σ(Fm − Fψ)

)
, (18)

whereFψ is the simulated fractional flow curve that is obtained by solving the forward problem with known perme-
ability k and porosityφ, in other words with knownψ, andΣ is the covariance matrix representing the measurement
errors. We takeΣ = I/2σ2

F , whereI is the identity matrix andσ2
F is the precision associated with the measurement

Fm and numerical solutionFψ [17, 19].
We use the Metropolis–Hasting MCMC to sample from the posterior distribution. At each iteration,ψp = [θk

p θφ
p ]

is proposed using an instrumental distributionq(ψp|ψ), whereψ represents the previously accepted state/parameters
in the chain, and then the forward problem is solved to determine the acceptance probability,

α(ψ, ψp) = min

(
1,

q(ψ|ψp)P (ψp|Fm)
q(ψp|ψ)P (ψ|Fm)

)
, (19)

i.e.,ψp is accepted with probabilityα(ψ,ψp).
In most reservoir simulations, solving the fine-scale forward problem is computationally expensive. Thus, the

single-stage MCMC limits the exploration of the posterior in a practical time. Therefore, we use a coarse-scale solution
based on upscaling before running the fine-scale flow simulator. Here, we run the flow simulator on the coarse-scale
model and compare the fractional flow curves to determine if we need to run on the fine-scale model.

We now briefly describe the two-stage MCMC discussed in [17, 19]. In the two-stage MCMC a screening process
is implemented using a coarse-scale model approximating the original equations (1) and (2). First, we proceed by
giving a brief description of this coarse-scale model. It is solved on a coarse grid whose discretization is done in a
similar fashion as in the fine-scale calculation described in Section 3, but with discretization parameters significantly
larger than their fine-scale counterpart. The key lies on a rigorous representation ofk andφ on the coarse grid obtained
from the fine-grid resolution. In this case, we use an upscaling procedure such that effective permeability and porosity
fields on the coarse grid deliver the same spatial average response as that of the underlying fine-scale problem locally.

To compute the effective permeability on the coarse grid, we solve forζ governed by equations similar to (1)
subject to the constant pressure and no flux boundary conditions on each coarse-grid cellĪ. After solving these
equations on the coarse grid, we compute the effective permeability tensor as [39]

(k̄(x)ei, ej) =
1
|Ī|

∫

Ī

(k(x)∇ζi(x), ej) dx, (20)

whereei is the standard Euclidean basis vector. Once we know the effective permeability on the coarse-grid cells,
we can solve (1) on the coarse grid withk̄ replacingk to get the upscaled Darcy velocity. We compute the effective
porosityφ̄ as the arithmetic average over eachĪ, i.e.,

φ̄ =
ΣN

i=1φi

N
(21)
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whereN is the number of fine-grid elements in̄I andφi denotes the porosity value ofith fine-grid element in̄I. In
a similar fashion, we solve (2) on the coarse grid with the effective porosity. In Fig. 2 it is not difficult to see that
the numerical solution of the coarse-scale model on the grid of16 × 16 is relatively inexpensive compared to the
calculation on the fine grid of128 × 128 and yet it manages to capture the general trend of the process. Hence it is
suitable for the screening purpose mentioned above.

Algorithm 1. Two-Stage MCMC

Given the covariance functionR, generate KLE parametrization{λn,ϕn}N
n=1

for p = 1 to Mmcmc do

(1) At ψ = (θk, θφ), generateψp = (θk
p,θφ

p ) from q(ψp|ψ)

(2) With ψp, compute upscaled̄k andφ̄ on the coarse grid using KLE on the fine grid and solve the forward
problem on the coarse grid to getFc

(3) Acceptψp with probability

αc(ψ, ψp) = min

(
1,

q(ψ|ψp)Pc(ψp|Fm)
q(ψp|ψ)Pc(ψ|Fm)

)

(4) If ψp is rejected, go back to (1), else useψp in the fine-grid simulation to getFf

(5) Takeψp with probability

αf (ψ,ψp) = min

(
1,

Pf (ψp|Fm)Pc(ψ|Fm)
Pf (ψ|Fm)Pc(ψp|Fm)

)

end

The basic procedure of the two-stage MCMC is shown in the Algorithm. Since we explore the high-dimensional
posterior distribution, we use a component-wise tuning mechanism in the MCMC. We consider the random walk
sampler,θL

p = θL + δLε, whereL representsk or φ, θL is the previously accepted proposal,θL
p is the current

proposal,δL is the tuning parameter, andε is a set of Gaussian random variables. Here, we treatθk andθφ separately.
We need to findδL such that the MCMC chain has a good acceptance rate and converges fast. We run the chain for
few iterations and find the acceptance rate. We reduce the step sizes if the acceptance rate is too low, or increase it
if the chain is moving very slowly (i.e., tuneδL so that the sampler has an acceptance rate that is neither too high
nor too low). In our simulations the value of each component ofδL is set to 1.0 targeting an acceptance rate of about

0.0

0.2

0.4

0.6

0.8

1.0

F
(t

)

0.0 0.2 0.4 0.6

time (t in PVI)

128x128 fine-grid

8x8 coarse-grid

16x16 coarse-grid

32x32 coarse-grid

64x64 coarse-grid

center well

corner well

FIG. 2: A comparison of simulated fractional flow obtained from upscaled model and fine-scale model.
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40%. In practice, to balance MCMC algorithm acceptance rates and size of steps through the posterior distribution of
the parameter space, we sample sub-vectors (or components) ofθL, which means we are faced with evaluating the
likelihood and running the simulator for each sub-vector (or component) ofθL [40].

6. NUMERICAL RESULTS

We now discuss a set of numerical experiments to demonstrate the performance of the proposed technique. We have
two extraction (or production) wells: one well is situated along the diagonal, opposite to the injection well, and the
other is situated at the center of a side that is one of the two sides that enclose the extraction (or production) well at
the corner. In this configuration, we refer to them as corner and center wells, respectively (see Figs. 1 and 3).

FIG. 3: Reference fields and corresponding flow patterns. Top: Permeability field (in logarithmic scale) on the left
and porosity on the right. Middle: Single-phase flow pattern att = 0.7 PVI (on the left injection of tracer untilt = 0.7
PVI and on the right injection of tracer untilt = 0.15 PVI). Bottom: Two-phase flow pattern (on the left att = 0.7
PVI and on the right att = 1.4 PVI).
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6.1 Step I: Characterization

For the single-phase flow problem the tracer is injected at the injection well at the rate of one pore-volume every five
years. To identify an efficient way of injecting the tracer from the characterization point of view (not considering the
cost), we consider two cases: the continuous injection of tracer untilt = 0.7 PVI and the injection of tracer until only
t = 0.15 PVI (see Fig. 4). We assume that we have observed tracer data as curves at the extraction wells until 0.7 PVI.
We use these curves to characterize the permeability and porosity fields in a two-stage MCMC method. In each case
we also consider the effect of incorporating static data for the characterization, i.e., we use the values of permeability
and porosity at the injection and production wells (see Section 4 to include static data in the Bayesian framework).
We now have four cases: injection of tracer untilt = 0.7 PVI with no static data, injection of tracer untilt = 0.15
PVI with no static data, injection of tracer untilt = 0.7 PVI with static data, and injection of tracer untilt = 0.15 PVI
with static data.

For KLE in (7), we select the correlation lengthLxx = Lyy = 0.2, Lxy = Lyx = 0, and varianceσY
2 = 4.

Figure 5 shows that the eigenvalues decay very fast for these values, and it is enough to consider the first twenty
eigenpairs in the KLE. Since we assume that the permeability and porosity share the same spatial structure, we share
the same KLE structure for the permeability and porosity fields, withNk = Nφ = 20. However, we model these
fields as independent random fields, we proposeθk andθφ separately in the Algorithm. Here, we generated reference
fields of permeability and porosity on a fine grid of size128× 128 using a set ofθk andθφ. The reference fields are
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shown in Fig. 3. The simulator was then run forward to produce corresponding a reference fractional flow curve at
each well (see Fig. 4).

Now, we turn our attention toσ2
F in the likelihood function (18). Theσ2

F must be fixed a priori, because treating
σ2

F as an unknown parameter results in an unacceptably large estimate [15]. The smaller the value ofσ2
F , the better

the sampled production curves are. Ifσ2
F is chosen to be too large, then the posterior will ignore the likelihood

and simply draw from the prior; ifσ2
F is too small, then the posterior probability exists only in extreme modes, which

unrealistically restricts possible permeability and porosity configurations. It is ideal to specifyσ2
F from the knowledge

of the error in measuring permeabilities and porosities. However, it is common to take a user-specified value forσ2
F

(see for example Oliver et al. [4]). Here, we specifyσ2
F = 10−4 andσ2

C = 4 × 10−4 for fine-scale and coarse-scale
simulations, respectively, which were found to be working well for our simulations.

As indicated in [16, 17, 19], in the case of distinct model problems, the two-stage MCMC runs fewer fine-scale
black-box simulations than the single-stage MCMC (see Table 1). Therefore, we use the two-stage MCMC for sam-
pling of permeability and porosity fields with the tracer test data. In the two-stage MCMC, we choose a coarse grid of
size16× 16, which not only captures the general trend of the fractional curves (see Fig. 2), but also runs about eight
times faster than the fine-grid simulation.

6.2 Step II: Prediction

The accepted realizations for permeability and porosity in Step I are used to run the forward problem for the two-
phase (water and oil) model until 1.4 PVI. The relative permeability functions of water and oil take the form ofs2 and
(1 − s)2, respectively, and the viscosity ratio between water and oil is 1:20. We assume that att = 0 the reservoir is
saturated by oil without any water [i.e.,s(x, 0) = 0]. The water is then injected at the injection well at the rate of one
pore-volume every five years. We then aggregate the results of the forward problem. This average curve is referred
to as the prediction of the production curve. The prediction curves are plotted using 1000, 2000, and 3000 accepted
fine-scale realizations and given in Figs. 6–9.

As shown in Figs. 6 and 7, including the static data in the MCMC chain helps to improve the prediction of the
breakthrough time, which is defined as the first time of arrival of water at a given production well. However, this
may result in longer burn-in period in the MCMC chain. See the curve that corresponds to “injection until 0.7 PVI
with static data” in Fig. 10. This is not the case for the curve that corresponds to “injection until 0.15 PVI with static
data.”

Also, we notice that the injection pattern of tracer plays an important role in the characterization of subsurface.
It is clear from Figs. 8 and 9 that the predictions of breakthrough time are more accurate if we inject the tracer
for a shorter period. In particular, if we use the static data with the shorter injection as shown in Fig. 9, the pre-
dictions are not only more accurate for the breakthrough time, but also for the entire curve of the center and the
corner wells. The better performance is attributed to the fact that a short time injection allows for incorporating
more important flow properties, which may not be otherwise detected should longer time injection is used. More-
over, this is also an encouraging finding from efficiency standpoint, since short time injection is more cost afford-
able.

TABLE 1: A comparison of accepted proposals for single-
and two-stage MCMCs

MCMC Single-stage Two-stage(16× 16)
Proposals 2000 2000
σ2

F 10−4 10−4

σ2
C — 4× 10−4

Coarse-scale acc. — 556
Fine-scale acc. 177 107
Acc. rate 8.9% 19.2%
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In Fig. 11 we give the upper and lower bounds of the standard deviation at a particular data point in the prediction
curve for the case “injection of tracer untilt = 0.15 PVI with static data.” For the center well the reference curve
almost entirely lies between the upper and lower bounds, and for the corner well most part of the reference curve falls
between the bounds.

The breakthrough time gives a good summary of the entire production curve [41]. In Fig. 12, kernel density
functions for breakthrough times of accepted production curves are shown. For the center well, in all the cases, we
predict the breakthrough time very accurately. For the corner well, the prediction based on the characterization in
which the tracer is injected until 0.15 PVI and static data is included in the posterior exploration is more accurate, and
it predicts that the simulated breakthrough time with the highest probability occurs precisely at the reference/measured
breakthrough.

7. CONCLUSIONS

We described a predictive simulation technique in subsurface flow that utilizes single- and two-phase models and
Bayesian MCMC, and discussed numerical results demonstrating its performance. In this technique, the tracer test
(single-phase flow) was used for characterizing the subsurface, and based on the characterization we predicted the
entire production curves of the two-phase flow.

It is well known that the injection of a tracer continuously is not economically feasible and injection of the tracer
for a shorter time period is very practical. Numerical results also suggest that the later approach associated with the
use of permeability and porosity values at some locations in the reservoir helps for a better characterization than the
former.

The breakthrough time often hints the behavior of the entire production curve, and the technique presented in
this paper accurately predicted the breakthrough times for both center and corner wells. This technique, which re-
lies on a “tracer test,” is very adaptable for the practices in geothermal and petroleum industries. Tracer testing is
simply a means for characterizing the subsurface. The numerical experiments show that the prediction based on the
characterization can be very reliable and potentially offers an efficient procedure in more complex subsurface flow
scenarios.
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APPENDIX A. A SEMI-DISCRETE SCHEME FOR DISCONTINUOUS COEFFICIENTS

In this section we outline the derivation of a second-order, semi-discrete, central scheme for the one-dimensional,
scalar conservation laws of the form

φ(x)
∂u

∂t
+

∂f(u)
∂x

= 0, (A.1)

subject to the initial condition

u(x, t = 0) = u0(x), (A.2)

whereu ∈ R, f(u) is a nonlinear flux, andφ(x) is a piecewise constant function ofx with φ(x) > 0. Since
we consider solving problems arising in two-phase flow, we derive the scheme for the scalar conservation law. The
derivation has a simple extension to systems of conservation law. Moreover, the derivation is based on the Nessyahu–
Tadmor (NT) and Kurganov–Tadmor (KT) central schemes proposed in [33, 42, 43], and here we give the outline of
the procedure.
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Definexi := i∆x, xi± 1
2

:= xi±∆x/2. Assume that we have already computed an approximation to the solution
at time levelt = tn—a piecewise linear approximatioñu(x, tn) ≈ u(x, tn) of the form

ũ(x, tn) :=
∑

i

pn
i (x)χi(x), (A.3)

where
pn

i (x) = ūn
i + (ux)n

i (x− xi), (A.4)

with slopes are approximated by MinMod limiter,χi is the characteristic function of the corresponding region, andūi

is the cell average defined by

ūi :=
1

∆x

∫ xi+1/2

xi−1/2

ũ(ξ, tn) dξ. (A.5)

We now derive the semi-discrete scheme for discontinuous coefficientsφi considering a dual grid approach, in
which φ(x) is defined on the given grid and the solution is computed on a modified grid (this is one of the original
contributions of the new scheme presented here that allows us to handle solution discontinuities away from porosity
discontinuities).

We define
φi+1/2 := φ(x), x ∈ [xi, xi+1], ∀i, (A.6)

andφi is a piecewise constant. We begin with the piecewise linear reconstruction{pn
i }, which may have discontinu-

ities at{xi+1/2}. We compute the maximum local speed of propagation of the discontinuities by

an
i+1/2 :=

1
φi+1/2

(
max

ω∈C (u+
i−1/2,u−i+1/2)

∂f

∂u
(ω)

)
, (A.7)

whereC (u+
i+1/2, u

−
i−1/2) is the curve that connectsu+

i+1/2 andu−i−1/2, andu+
i+1/2 := pn

i+1(xi+1/2) andu−i−1/2 :=
pn

i (xi+1/2). We consider the domains in Figure A.13

[xn
i−1/2,r, xi − ε∆t2]× [tn, tn+1], [xi − ε∆t2, xi + ε∆t2]× [tn, tn+1],

[xi + ε∆t2, xn
i+1/2,l]× [tn, tn+1] and [xn

i+1/2,l, x
n
i+1/2,r]× [tn, tn+1]

(A.8)
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FIG. A.13: Central differencing with discontinuous porosity coefficients.
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with
xn

i+1/2,l := xi+1/2 −∆t an
i+1/2 and xn

i+1/2,r := xi+1/2 + ∆t an
i+1/2. (A.9)

Since in the interval[xn
i+1/2,l, x

n
i+1/2,r] the value ofφ is constant, we can compute the cell averagew̄n+1

i+1/2 as

w̄n+1
i+1/2 :=

1
∆xi+1/2

∫ xn
i+1/2,r

xn
i+1/2,l

u(ξ, tn+1) dξ =
ūn

i + ūn
i+1

2
+

∆x− an
i+1/2∆t

4
{(ux)n

i − (ux)n
i+1}

− 1
2an

i+1/2φi+1/2

[
f(un+1/2

i+1/2,r)− f(un+1/2
i+1/2,l)

]
.

(A.10)

Let us now focus on the cell average in the interval[xn
i−1/2,r, x

n
i+1/2,l]. We want to use an appropriate quadrature

rule to approximate the flux integrals atx = xi. The discontinuity inφ at x = xi causes the solutionu to lose
differentiability atxi and the solution is not smooth along the linex = xi. Therefore, we introduce the cell[xi −
ε∆t2, xi + ε∆t2] of width 2ε∆t2 atxi. Now, we can use the quadrature rule along the vertical linesx = xi − ε∆t2

andx = xi + ε∆t2. Let us exactly compute the following integral, which is related tow̄n+1
i as

1
2ε∆t2

∫ xi+ε∆t2

xi−ε∆t2
φ(ξ)u(ξ, tn+1) dξ

=
1

2ε∆t2

[
φi−1/2

∫ xi

xi−ε∆t2
u(ξ, tn) dξ + φi+1/2

∫ xi+ε∆t2

xi

u(ξ, tn) dξ

]

− 1
2ε∆t2

∫ tn+1

tn

[
f(u(xi + ε∆t2, τ))− f(u(xi − ε∆t2, τ))

]
dτ.

(A.11)

With the simple arithmetic manipulation, we can write the integral in the left-hand side of (A.11) as

∫ xi+ε∆t2

xi−ε∆t2
φ(ξ)u(ξ, tn+1) dξ =

φi−1/2 + φi+1/2

2

∫ xi+ε∆t2

xi−ε∆t2
u(ξ, tn+1) dξ

+
φi−1/2 − φi+1/2

2

[∫ xi

xi−ε∆t2
u(ξ, tn+1) dξ−

∫ xi+ε∆t2

xi

u(ξ, tn+1) dξ

]
.

(A.12)

Though, atx = xi the solutionu(ξ, tn+1) loses differentiability, the continuity of the solution is maintained. There-
fore, as∆t → 0

Ri :=
φi−1/2 − φi+1/2

φi−1/2 + φi+1/2

[∫ xi

xi−ε∆t2
u(ξ, tn+1) dξ−

∫ xi+ε∆t2

xi

u(ξ, tn+1) dξ

]
→ 0. (A.13)

Therefore, we can writēwn+1
i as

w̄n+1
i :=

1
2ε∆t2

∫ xi+ε∆t2

xi−ε∆t2
u(ξ, tn+1) dξ =

(φi−1/2 + φi+1/2)
(φi−1/2 + φi+1/2)

ūi

− (φi−1/2 − φi+1/2)ε∆t2

2(φi−1/2 + φi+1/2)
(ux)i − 1

(φi−1/2 + φi+1/2)ε∆t

×
[
f(un+1/2(xi + ε∆t2))− f(un+1/2(xi − ε∆t2))

]
+

1
2ε∆t2

Ri.

(A.14)
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We can writepw̄n+1
i as

pw̄n+1
i :=

1
(∆x/2− an

i+1/2∆t− ε∆t2)

∫ xn
i+1/2,l

xi+ε∆t2
u(ξ, tn+1) dξ = ūi −

∆x/2− an
i+1/2∆t + ε∆t2

2
(ux)i

− ∆t

φi+1/2(∆x/2− an
i+1/2∆t− ε∆t2)

[
f(un+1/2

i+1/2,l)− f(un+1/2(xi + ε∆t2))
]
.

(A.15)

To obtain the cell averages over the original grid of the uniform, non-staggered cells[xi−1/2, xi+1/2], we consider
the piecewise linear reconstruction over non-uniform cells of the form

w̃(x, tn+1) :=
∑

j

{[w̄n+1
i+1/2 − (ux)n+1

i+1/2(x− xi+1/2)]1[xn
i+1/2,l,x

n
i+1/2,r]

+ pw̄n+1
i 1[xi+ε∆t2,xn

i+1/2,l]
+ w̄n+1

i 1[xi−ε∆t2,xi+ε∆t2]

+ mw̄n+1
i 1[xn

i−1/2,r,xi−ε∆t2]},

(A.16)

with ux(xi+1/2, t
n+1) are approximated by

(ux)n+1
i+1/2 = minmod

(
wn+1

i+1 − wn+1
i+1/2

∆X
,
wn+1

i+1/2 − pwn+1
i

∆X

)
, (A.17)

where

∆X =
∆x/2 + ∆t an

i+1/2 − ε∆t2

2
. (A.18)

Here, we do not need to reconstruct the average of the smooth portionsmw̄n+1
i andpw̄n+1

i of the solution. Also, we
can skip reconstructing the portionwn+1

i of the solution, where the solution is continuous, but is not differentiable.
Now we can write the fully discrete second-order central scheme as

ūn+1
i =

1
∆x

∫ xi+1/2

xi−1/2

w̃(ξ, tn+1) dξ =
an

i−1/2∆t

∆x
w̄n+1

i−1/2 +
(∆x/2− an

i−1/2∆t− ε∆t2)

∆x
mw̄n+1

i

+
2ε∆t2

∆x
w̄n+1

i +
(∆x/2− an

i+1/2∆t− ε∆t2)

∆x
pw̄n+1

i +
an

i+1/2∆t

∆x
w̄n+1

i+1/2 + O(∆t2)

(A.19)

We substitutēun+1
i from the fully discrete scheme (A.19) in

dūi

dt
= lim

∆t→0

ūn+1
i − ūn

i

∆t
, (A.20)

and take∆t → 0 with fixed∆x. By rearranging the terms we can write the semi-discrete central scheme as

dūi

dt
= −

[
Hi+1/2(t)−H+

i (t)
∆x

+
H−

i (t)−Hi−1/2(t)
∆x

]
, (A.21)

where

Hi+1/2 =
f(u+

i+1/2) + f(u−i+1/2)

2φi+1/2
−

an
i+1/2

2
(u+

i+1/2 − u−i+1/2), (A.22)

and
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H+
i =

f(ūi)
φi+1/2

. (A.23)

The resulting semi-discrete scheme can then be solved by a SSP Runge–Kutta scheme [44].
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