Inscrição na biblioteca: Guest
Telecommunications and Radio Engineering

Publicou 12 edições por ano

ISSN Imprimir: 0040-2508

ISSN On-line: 1943-6009

SJR: 0.185 SNIP: 0.268 CiteScore™:: 1.5 H-Index: 22

Indexed in

KLYNOTRONIC EFFECT IN VACUUM SOURCES OF TERAHERTZ ELECTROMAGNETIC OSCILLATIONS

Volume 78, Edição 18, 2019, pp. 1601-1636
DOI: 10.1615/TelecomRadEng.v78.i18.10
Get accessGet access

RESUMO

In the vacuum microwave electronics, every attempt to increase the operating frequency of electromagnetic oscillation sources was primarily focused on improving the efficiency of electron-wave interaction between rectilinear electronic flows and slow spatial harmonics of electromagnetic waves in metallic periodic slowing structures (PSS) based on the Vavilov−Cherenkov effect. At the same time, the dependence between the utilization factor of rectilinear electron flows and the frequency-power characteristics of the Cherenkov sources and amplifiers of electromagnetic oscillations has not been properly studied yet. The klynotron effect, revealed in 1956 by scientists of the Institute of Radiophysics and Electronics of Academy of Sciences of the Ukrainian SSR in a research on the O-type backward wave tubes (O-BWT) of short-wave bands, proved a strong dependence between the utilization factor of a spatially developed rectilinear electronic flows and the frequency-power characteristics of O-BWTs. Scientific sources cannot offer any comprehensive overview of theoretical and experimental research into the klynotronic effect and frequency-power characteristics of vacuum sources of terahertz (THz) electromagnetic oscillations with spatially developed electron currents, created for the last 50 years and based on different operational principles.
The focus of our study was frequency-power characteristics of THz O-BWT klynotrons, THz klynoorotrons, THz gyroklynotrons, THz klynoorbictrons. The analysis has revealed a close relationship between the utilization factor of spatially developed electron flows and frequency-power, as well as the mass-size characteristics of THz vacuum sources. The klynotronic effect in vacuum electromagnetic sources with spatially developed electron currents can be used to advantage to allow developing of compact generators and signal amplifiers in the "THz span" of the electromagnetic spectrum.

Referências
  1. Koch, M., (2006) Terahertz technology: Quo vadis? Photonik Int., pp. 14-17.

  2. Tonouchi, M., (2006) Terahertz Technology, Tokyo: Ohmsha.

  3. Woolard, D., Kaul, R., Suenram, R., Walker, A.H. et al., (1999) Terahertz electronics for chemical and biological warfare agent detection, 1999 IEEE MTT-S Int. Microwave Symp. Digest (Cat. No.99CH36282). Anaheim, CA, USA, 3, pp. 925-928. DOI: 10.1109/MWSYM.1999. 779537.

  4. Clunie, D., Mesyats, G., Osipov, M.I., Petelin, M.I. et al., (1999) The design, construction, kid testing of an experimental high power, short-pulse radar, Strong Microwaves in Plasmas: Proc. Int. Workshop, Nizhny Novgorod, Russia, IAP RAS, 2, pp. 886-902.

  5. Booske, J.H., (2008) Plasma physics and related challenges of millimeter-wave-to-terahertz and high power microwave generation, Phys. Plasmas, 15(5), pp. 055502 (16 p.). DOI: https://doi.org/10.1063/L2838240.

  6. Bykov, Yu.V., Ginzburg, N.S., Glyavin, M.Yu., Golubev, S.V. et al., (2014) The development of gyrotrons and their applications for plasma science and material processing, Terahertz Science and Technology, 7(2), pp. 70-79. DOI:10.11906/TST.070-079.2014.06.06.

  7. Manley, J.M. and Rowe, H.F., (1959) General energy relations in nonlinear reactances, Proc. IRE, 47(12), pp. 2115-2116.

  8. Altshuler, Yu.G. and Tatarenko, A.S., (1963) Backward Wave Tubes with Low Power, Moscow, Russia: Sovetskoe Radio Publ., (in Russian).

  9. Trubetskov, D.I., (1986) Introduction to microwave electronics. History and initial information. Lecture on microwave electronics and radiophysics, 7th Winter School-Workshop of Engineers, Saratov, Russia: Saratov University Publ., (in Russian).

  10. Kompfner, R., (1953) Backward-wave oscillator, Bell Lab. Rec., 31(8), pp. 281-285.

  11. Kompfner, R. and Williams, N.T., (1953) Backward-wave tubes, Proc. IRE, 41(11), pp.1602-I611. DOI: 10.1109/JRPROC.1953.274186.

  12. Stelmakh, M.F., (1953) To the theory of a binary block of slot resonators, Radiotekhnika, 8, pp. 30-37, (in Russian).

  13. Stelmakh, M.F., (1957) On the interaction of the electron beam with the field of spatial harmonics, Radiotekhnika i Elektronika, 2(4), pp. 461-469, (in Russian).

  14. Guenard, P.R., Doehler, O., Epsztein, R., and Warnecke, B., (1952) Nouveau Tubes Oscillateurs a Large Bande d'accord onique pour Hyperfrequences, Comptes Rendus Acad. Sci, 235, pp. 236-238.

  15. Gerschenzon, E.M., Golant, M.B., Negirev, A.A., Savel'ev, V.S., and Devyatkov, N.D. (ed.), (1985) Backward Wave Tubes of Millimeter and Submillimeter Wave Bands, Moscow, Russia: Radio i Svyaz' Publ., (in Russian).

  16. Negirev, A.A. and Fedorov, A.S., (1999) Wide-band small-size backward wave tubes of millimeter range, Radioengineering, 4, pp. 41-43, (in Russian).

  17. Ives, L., Kory, C., Read, M., Neilson, J. et al., (2004) Development of Terahertz Backward Wave Oscillators, 5th IEEE Int. Vacuum Electronics Conf. (IEEE Cat. No.04EX786). Digest. Monterey, CA, USA, pp. 67-68. DOI:10.1109/IVELEC.2004.1316201.

  18. Dayton, J.A.Jr., Mearini, G.T., and Kory, C.L., (2004) Diamond Based Submillimeter Backward Wave Oscillator, Ibid. pp. 71-72. DOI:10.1109/IVELEC.2004.1316203.

  19. Barnet, L.R., Stankiewicz, N., and Dayton, J.A.Jr., (2004) Submillimeter Backward-Wave Oscillator, IEEE Int. Electron Devices Meeting, San Francisco, CA, TechnicalDigest., pp. 341-342.

  20. Walker, L.R., (1953) Starting current in the backward-wave oscillator, J. Appl. Phys, 24(7), pp. 854-859. DOI:10.1063/1.1721394.

  21. Levin, G.Ya., (1956) Backward Wave Tube, USSR Authors' Certificate 341,113, (in Russian).

  22. Karp, A., (1957) Backward-Wave Oscillator Experiments at 100 to 200 Kilomegacycles, Proc. IRE, 45(4), pp. 496-503. DOI: 10. 1109/JRPOC, 1957.278439.

  23. Usikov, A.Ya, (ed.), Kaner, E.A., Truten', I.D., Levin, G.Ya. et al., (1986) Electronics and Radiophysics of Millimeter and Submillimeter Radio Waves, Kyiv, Ukraine: Naukova Dumka Publ., (in Russian).

  24. Levin, G.Ya., Borodkin, A.I., Kirichenko, A.Ya., Usikov, A.Ya. (ed.), and Churilova, S.A., (1992) Klynotron, Kyiv, Ukraine: Naukova Dumka Publ., (in Russian).

  25. Kirichenko, A.Ya. and Yakovenko, V.M. (ed.), (2007) Klynotron - 50. Radiofizika i Elektronika, 12(spec. iss.), pp. 5-13, (in Russian).

  26. Yeryomka, V.D., Belukha, A.Ya., and Kirichenko, L.A., (2003) Low-resonance mm and submm-wave BWO-klynotron, 13th Int. Crimean Conf. Microwave and Telecommunication Technology (CriMiCo'2003), Sevastopol, Crimea, Ukraine, pp. 255-256.

  27. Yeryomka, V.D., Kirichenko, A.Ya., and Solodovnik, V.A., (1977) Study the possibility of current - free frequency control O-type BWO-klynotrons, Proc. of the Institute for Radiophysics and Electronics AS of Ukrainian SSR, 23, pp. 60-79, (in Russian).

  28. Yeryomka, V.D., Kirichenko, A.Ya., and Solodovnik, V.A., (1976) Backward Wave Tube, USSR Inventor Certificate 555,751, (in Russian).

  29. Kovschov, Yu.S., Ivanov, A.I., Kisko, S.A., Ponomarenko, S.S. et al., (2013) Stabilization of the electromagnetic oscillation frequency in the BWO-oscillators of the submillimeter range, Vestnik of Kharkiv National University named after V N. Karazin, 1094, Radiofizika i Elektronika, 23, pp. 77-83, (in Russian).

  30. Balaklitskiy, I.M., Maystrenko, Yu.V., and Mytsenko, I.M., (1979) Device Oscillator Frequency Stabilizer, USSR Inventor Certificate 892,741, (in Russian).

  31. Mytsenko, I.M., Royenko, A.N., and Chernyavsky, I.Yu., (2002) Device for stabilizing the frequency of the microwave oscillator, Collection of Scientific Works of Kharkiv Military University, 3(41), pp. 108-109, (in Russian).

  32. Yeryomka, V.D. and Mytsenko, I.M., (2015) The way current-less tuning and stabilization of the frequency teraherz - type klynotron self-oscillation, 25th Int. Crimean Conf. "Microwave & Telecommunication Technology" (CriMiCo'2015), Conf. Proc. Sevastopol, Crimea, 1, pp. 171-175, (in Russian).

  33. Bezgina, I.P., Yeryomka, V.D., Makulina, T.A., and Mytsenko, I.M., (2015) Current-less tuning and control of self-oscillations frequency terahertz range klynotron, Izv. Vyssh. Uchebn. Zaved. Applied Nonlinear Dynamics, 23(6), pp. 47-59, (in Russian). DOI:10.18500/0869-6632-2015-23-6-47-59.

  34. Yeryomka, D.V., Yeryomka, V.D., Kuz'michev, I.K., and Mytsenko, I.M., (2016) Physical techniques of stabilizing the frequency of self-oscillation klynotrons terahertz range with using an output fluctuations, Int. Conf. Information and Communication Technologies and Radiotronics (UkrMiCo'2016), Kyiv, Ukraine, US IEEE Xplore Digital Library.

  35. Levin, G.Ya., Churilova, S.A., and Chumak, V.G., (2001) Reducing the effect of cathode ion bombardment on performance characteristics of microwave vacuum tubes, Telecommunications and Radio Engineering, 55(10-11), pp. 184-187.

  36. Levin, G.Ya. and Churilova, S.A., (1991) The Electron Gun, RU Pat. 2028687, (in Russian).

  37. Chumak, V.G. and Churilova, S.A., (2002) Electron Gun for Millimeter and Submillimeter-Wave Klynotrons, Radiophys. andRadioastron., 7(2), pp. 175-179, (in Russian).

  38. Lysenko, E.E., Pishko, O.F., Chumak, V.G., and Churilova, S.A., (2004) The Status of the Developments of Continuous Klynotrons, Achievements of Modern Radioelectronics, 8, pp. 3-12, (in Russian).

  39. Pishko, O.F. and Churilova, S.A., (2004) Modelling of the Interaction Space of Millimeter and Submillimeter Clinotrons, Achievements of Modern Radioelectronics, 1, pp. 10-19, (in Russian).

  40. Buzik, L.M. and Pishko, O.F., (1996) Excitation of an Open Multistage Slowing System of the Comb-Type by a Waveguide, Radiotekhnika i Elektronika, 41(4), pp. 433-440, (in Russian).

  41. Buzik, L.M., Pishko, O.F., and Churilova, S.A., (1997) Directional patterns of a waveguide exciting a open multi-step slow-wave system, Proc. of the 2nd Int. Conf. Antenna Theory and Techniques (ICATT), Kyiv, Ukraine.

  42. Lysenko, E.E., Pishko, O.F., Chumak, V.G., and Churilova, S.A., (1999) Experimental Research of Clinotron with Distributed Quasioptical Power Output, Radio Phys .andRadio Astron., 4(1), pp. 13-19, (in Russian).

  43. Lysenko, E.E., Pishko, O.F., Chumak, V.G., and Churilova, S.A., (2009) Experimental Investigation of a Submillimeter Klynotron, Electromagnetic Waves and Electronic Systems, 14(2), pp. 72-80, (in Russian).

  44. Lysenko, E.E., Pishko, O.F., Chumak, V.G., and Churilova, S.A., (2001) Resonance Line Q-Factor of Millimeter-Wave Klynotrons, Radio Phys. and Radio Astron., 6(4), pp. 317-322, (in Russian).

  45. Vavriv, D.M., (2008) Theory of the Klynotron, Telecommunications and Radio Engineering, 67(9), pp. 757-781.

  46. Mil'cho, M.V., Ephimov, B.P., Zavertanyi, V.V., and Goncharov, V.V., (2006) Peculiar properties of operating modes of klynotron-type oscillators, Telecommunications and Radio Engineering, 65(8), pp. 719-730.

  47. Yeryomka, V.D, Kirichenko, A.Ya., and Solodovnik, V.A., (1977) On Excitation of the Comb Cone by an Electron Beam, Izy. Vyssh. Uchebn. Zaved. Radiophysics and Quantum Electronics, 20(10), pp. 1580-1582, (in Russian).

  48. Mi'lcho, M.V., (2008) The Interaction of Electrons with Transversal and Longitudinal Components of the High-Frequency Field in a Klynotron-Type Oscillator, Telecommunications and Radio Engineering, 67(1), pp.53-75.

  49. Yeryomka, V.D., (2013) Terahertz vacuum electromagnetic radiation sources: evolution zigzag from klynotron to klynoorbictron, Izv. Vyssh. Uchebn. Zaved. Applied Nonlinear Dynamics, 21(1), pp. 7-34, (in Russian). DOI: 10.18500/0869-6632-2013-21-1-7-34.

  50. Andrusckevich, V.S., Gamayunov, Yu.G., and Patrusheva, E.V., (2010) A nonlinear klynotron theory, J. Commun. Technol. El., 55(3), pp. 330-336.

  51. Andrusckevich, V.S., Gamayunov, Yu.G., and Patrusheva, E.V., (2011) A nonstationary theory of the klynotron, J. Commun. Technol. El., 56(4), pp. 458-464.

  52. Sattorov, M., Khutoryan, E., Lukin, K., Kwon, O., and Park, G.S., (2013) Improved efficiency of backward - wave oscillator with an inclined electron beam, IEEE Electron Devices, 60(1), pp. 458-463. DOI:10.1109/ TED.2012.2225837.

  53. Khutoryan, E., Sattorov, M., Lukin, K., Oh-Joon Kwon et al., (2015) Theory of Multimode Resonant Backward - Wave Oscillator with an Inclined Electron Beam, IEEE Electron Devices, 62(5), pp. 1628-1634. DOI: 10.1109/ TED.2015.2411680.

  54. Gamayunov, Y.G., Patrusheva, E.V., and Tolstikov, A.V., (2015) Klynotron in the amplification mode, J. Commun. Technol. El, 60(7), pp. 789-795. DOI:10.7868/ S0033849415060078.

  55. Odarenko, Ye.N. and Shmat'ko, A.A., (1992) Self-excitation of oscillators in O-type resonant oscillation with a long-term interaction with an inclined magnetostatical field, Radiotekhnika i Elektronika, 37(2), pp. 303-310, (in Russian).

  56. Shmat'ko, A.A., (2008) Electron-Wave Systems of Millimeter Range. Vol. 1, Kharkiv, Ukraine: V.N. Karazin KhNU Publ., pp. 335-456, (in Russian).

  57. Taranenko, Z.I. and Trokhimenko, Ya.K., (1965) Slow-Wave Structures, Kyiv, Ukraine: Tekhnika Publ., (in Russian).

  58. Silin, R.A. and Sazonov, V.P., (1966) Slow-Wave Structures, Moscow, Russia: Sov. Radio Publ., (in Russian).

  59. Yeryomka, V.D., Kurayev, A.A., and Matveyenko, V.V., (2018) The absence of the "defect" efficiency in the klynotrons, Doklady BGUIR, 111(1), pp. 103-104, (in Russian).

  60. Kapitonov, V.E., (1988) Optimization of Magnetic Focusing Systems by Synthesis Method, in: Electronics Millimeter and Submillimeter Ranges, Kyiv, Ukraine: Naukova Dumka Publ., pp. 172-178, (in Russian).

  61. Djubua, B.Ch. and Korolev, A.N., (2011) Modern effective cathodes (To the history of their creation in FSUE RPC Istok), Elektronnaya Tekhnika. Ser. SVCh-Tekhnika, 1(508), pp. 5-24, (in Russian).

  62. Rusin, F.S. and Bogomolov, G.D., (1966) Generation of Oscillations in an Open Resonator, Pis'ma Zh. Eksp. Teor. Fiz., 4(6), pp. 236-239, (in Russian).

  63. Mizuno, K., Ono, S., and Shibata, Y., (1972) Two different mode interactions in an electron tube with a Fabry-Perot resonator - The Ledatron, IEEE Trans. Electron Devices, 20(8), pp. 749-752. DOI:10.1109/T-ED.1973.17737.

  64. Schestopalov, V.P. (ed.), Vertiy, A.A., Yermak, G.P., Skrynnik, B.K. et al., (1991) Diffraction Radiation Oscillators, Kyiv, Ukraine: Naukova Dumka Publ., (in Russian).

  65. Moroz, E.E., Soroka, A.S., Tret'yakov, O.A., and Shmat'ko, A.A., (1980) Resonator with Double Grating as an Oscillation System, Radiotekhnika i Elektronika, 25(11), pp. 2292-2300, (in Russian).

  66. Myasin, E.A., (2016) Orotron and its modifications, in: A.E. Khramov, A.G. Belanov, V.D. Yeryomka, V.E. Zapevalov, A.A. Koronovskiy (eds.), Generation and Amplification of Terahertz Range Signals, Saratov, Russia: Yu.A. Gagarin SSTU Publ., Ch. 4, pp. 160-194, (in Russian). ISBN 978-5-7433-3013-3.

  67. Yeryomka, V.D., Korneenkov, V.K., Skrynnik, B.K., and Shestopalov, V.P., (1976) Diffraction Radiation Oscillato, USSR Inventor Certificate 669,963, (in Russian).

  68. Yeryomka, V.D., Korneenkov, V.K., and Shestopalov, V.P., (1977) Diffraction Radiation Oscillator, USSR Inventor Certificate 644,254, (in Russian).

  69. Yeryomka, V.D., Stadnik, A.V., and Shestopalov, V.P., (1980) Diffraction Radiation Oscillator, USSR Inventor Certificate 830,946, (in Russian).

  70. Yeryomka, V.D., Kravchenko, V.F., Kurayev, A.A., Pustovoit, V.I., and Sinitsyn, A.K., (2000) Atomic Functions. In the Optimization Problem for the Efficiency of a Two - Beam Orotron with an Irregular Binary Comb, Zarubezhnaya Radioelektronika. Usp. Sovremennoy Radioelektroniki, 3, pp. 58-62, (in Russian).

  71. Gulyaev, Yu.V., Kurayev, A.A., and Nefedov, E.I., (1981) To the Problem of Optimizing a Coaxial Orotron, Dok. Akad. Nauk USSR, 257(2), pp. 349-352, (in Russian).

  72. Yeryomka, V.D., Kurayev, A.A., and Sinitsyn, A.K., (2008) Coaxial Orotron, Ukraine. Pat. 89882, (in Ukrainian).

  73. Kurayev, A.A., Sinitsyn, A.K., Rak, O.A., and Yeryomka, V.D., (2010) Terahertz range coaxial clinoorotron oscillator, Proc. 7th Int. Kharkiv Symp. Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves (MSMW'2010), Kharkov, Ukraine, pp. 1-3.

  74. Kurayev, AA., Sinitsyn, A.K., Rak, A.O., and Yeryomka, V.D., (2010) Efficiency of coaxial klynoorotron, 20th Int. Crimean Conf. Microwave and Telecommunication Technology (CriMiCo'2010), Sevastopol, Crimea, Ukraine, 8-12 Sept., IEEE Publ., pp. 259-260. DOI: 10.1109/CRMICO.2010.5632596.

  75. Yeryomka, V.D., Kurayev, A.A., and Sinitsyn, A.K., (2008) Optimization of Phase Wave Velocity in a Millimeter Wave Inclined Flow Orotron, Radiofizika i Elektronika, 13(4), pp. 383-393, (in Russian).

  76. Makhalov, P.B. and Fedotov, A.E., (2008) Theory of orotron with inclined electron beam, Electromagnetic Waves and Electron Systems, 13(7), pp. 51-56, (in Russian).

  77. Fedotov, A.E., (2008) A Theory of the Orotron with an Inclined Electron Beam, Int. J. Infrared Millimeter Waves, 29(11), pp. 997-1003.

  78. Yeryomka, V.D., Kirichenko, A.Ya., and Pospelov. L.A., (1969) Klynotron - multiplier millimeter and submillimeter wavelengths bands, USSR Inventor Certificate 50,354, (in Russian).

  79. Mil'cho, M.V., (2015) Electron bunching in the klynotron-type oscillators. "Klynotron" as a frequency multiplier, Telecommunications and Radio Engineering, 74(16), pp. 1433-1443.

  80. Yeryomka, V.D., Kirichenko, A.Ya., and Pospelov, L.A., (1969) Klynoorotron - frequency multiplier millimeter and submillimeter wavelengths bands, USSR Authors' Certificate 59,810, (in Russian).

  81. Yeryomka, V.D., (2007) Frequency multipliers with inclined electron flow, Radiofizika i Electronica, 12(Spec. Iss.), pp. 81-103, (in Russian).

  82. Yeryomka, V.D., (2007) Frequency multipliers with inclined electron flow, 17th Int. Crimean Conf. Microwave & Telecommunication Technology (CriMiCo'2007), Sevastopol, Crimea, Ukraine, 1, pp. 151-152.

  83. Tsvyk, A.I., Nesterenko, A.V., Zheltov, V.N., and Khutoryan, E.M., (2001) DRO with Inclined of Focusing Magnetostatic Field, 11th Int. Conf. Microwave & Telecommunication Technology (CriMiCo 2001), Sevastopol, Crimea, Ukraine, 10-14 Sept., pp. 193-194.

  84. Kurayev, A.A., (1969) MCR - monotron with wide electron flow and inclined magnetic field relatively resonator axis, Radiotekhnika i Elektronika, 14(9), pp. 1614-1622, (in Russian).

  85. Kurayev, A.A. and Sinitsyn, A.K., (2004) Gyroklynotron's Efficiency, 5th IEEE Int. Vacuum Electronics Conf. (IEEE Cat. No.04EX786), Digest. Monterey, CA, USA, 27-29 Apr. 2004, pp. 190-191. D0I:10.1109/IVELEC.2004. 1316266.

  86. Kurayev, A.A. and Sinitsyn, A.K., (2004) Prospects for Increasing the Power of Short-Wave Gyrotrons, Radiotekhnika, 9, pp. 48-53, (in Russian).

  87. Yeryomka, V.D., (2013) Orbictron, Ukraine Pat. 107,057, (in Ukrainian).

  88. Yeryomka, V.D., Kurayev, A.A., and Sinitsyn, A.K., (2014) Orbictron-oscillator: description of a model and computation results obtained in the 180 GHz range, Telecommunications and Radio Engineering, 73(12), pp. 1087-1103.

  89. Yeryomka, V.D., (2013) Orbictron of Yeryomka, Ukraine Pat. 108,178, (in Ukrainian).

  90. Gurevich, A.V., Yeryomka, V.D., Kurayev, A.A., Kravchenko, V.F., and Sinitsyn, A.K., (2007) Two-stage orbotron - amplifier and frequency multiplier, Usp. Sovremennoi Radioelektroniki, 10, pp. 64-69, (in Russian).

  91. Yeryomka, V.D., Kurayev, A.A., and Sinitsyn, A.K., (2012) Simulation of 180 GHz Orbictron amplifier, 22nd Int. Crimean Conf. "Microwave & Tele-communication Technology" (CriMiCo'2012), Sevastopol, Crimea, Ukraine, 1, pp. 197-198.

  92. Yeryomka, V.D., Kurayev, A.A., and Sinitsyn, A.K., (2013) 0.18-THz orbictron-amplifier, 8th Int. Kharkov Symp. on Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves (MSMW'2013), Kharkov, Ukraine, pp. 147-148.' D0I:10.1109/MSMW.2013.6622196.

  93. Yeryomka, V.D., Kurayev, A.A., and Sinitsyn, A.K., (2013) Optimized variants of 0.18 THz Klynoorbictron-Amplifier, 14th IEEE Int. Vacuum Electronics Conf. (IVEC'2013), Paris, France.

  94. Yeryomka, V.D., Gurevich, A.V., Kurayev, A.A., and Sinitsyn, A.K., (2010) Klynoorbictron - terahertz range oscillator, 7th Int. Kharkiv Symp. Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves (MSMW'2010), Kharkov, Ukraine, 21-26 June 2010, IEEE, pp. 622-624. D0I:10.1109/ MSMW.2010.5546036.

  95. Happek, U., Severs, A.I., and Blum, E.B., (1991) Observation of coherent transition radiation, Phys. Rev. Lett., 67(21), pp. 2962-2965. DOI:https://doi.org/10.1103/ PhysRevLett.67.2962.

  96. Lukin, K.A., Yephimov, B.P., and Rakityansky, V.A., (1988) Transformation of the Chaotic Oscillations Spectrum by Reflections, Zh. Tekh. Fiz., 58(12), pp. 2398-2400, (in Russian).

  97. Lukin, K.A. and Rakityansky, V.A., (1992) Excitation of Intensive Chaotic Oscillations of Millimeter Waveband, 2nd URSI Int. Symp. Signals, Systems and Electronics (ISSSE 1992), Paris, France, pp. 454-457.

  98. Rakityansky, V.A. and Lukin, K.A., (1995) Excitation of chaotic oscillation in millimeter BWO's, Int. J. Infrared Millimeter Waves, 16(6), pp. 1037-1049.

  99. Lukin, K.A. and Rakityansky, V.A., (2001) Sources of Millimeter Noise Oscillation, 4th Int. Kharkov Symp. "Physics and Engineering of Millimeter and Submillimeter Waves" (MSMW'2001), Kharkov, Ukraine, 4-9 June 2001, 2, pp. 322-324.

  100. Lukin, K.A., (1998) Millimeter Wave Noise Radar Technology, 3rd Int. Kharkiv Symp. "Physics and Engineering of Millimeter and Submillimeter Waves" (MSMW'1998), Proc. Kharkiv, Ukraine, 1, pp. 94-97.

  101. Lukin, K.A., (2002) The Principles of Noise Radar Technology, 1st Int. Workshop on the Noise Radar Technology (NPTW'2002), Proc. Yalta, Crimea, Ukraine, 18-20 Sept. 2002, pp. 13-22.

Próximos artigos

A Slotted Pentagon Shape Quad Band Two-Element Millimeter Wave MIMO Antenna using Theory of Characteristic Modes Parveez Shariff B G, Sameena Pathan, Pallavi R Mane, Tanweer Ali Design and Develop Low power memory controller for GC-eDRAM cell using ICG Shravan Chintam, Kaleem Fatima, Paidimarry Chandra sekhar Lighting up Data: The Future of Wireless Data Transfer with Li-Fi Technology Balaka Biswas, Aryan Nakhale , Aditya Roshan Sinha Design of Implantable Antennas for Biomedical Applications M Satish Kumar, Sivasubramanyam Medasani , Penchala Reddy Sura, Tathababu Addepalli, Jetti Chandra Sekhar Rao, J Prasanth Kumar, B.Y.V.N.R. Swamy, A L Siridhara Diffraction Problem with Time-Varying Boundary Conditions Fatih Erden A Proposed MIMO Antenna Design for Ultra-Wideband THz Applications Amin Al Ka'bi, Ali Mustafa Interconnection scheme for multi-protocols heterogeneous wireless communication system in civil airport Wei Zhang, He Li, Yuchu Ji, Yang Wang Design and implementation of MIMO antenna for S-band satellite applications Suganya E, Anita Jones Mary Pushpa T, Prabhu T PROPAGATION OF VECTOR VORTEX BEAMS EXCITED BY A TERAHERTZ LASER DIELECTRIC RESONATOR Anrey Degtyarev, Mykola Dubinin, Vyacheslav Maslov, Konstantin Muntean, Oleg Svistunov DEVELOPMENT OF NOVEL CONFORMAL ARRAY ANTENNA FOR AIRBORNE APPLICATIONS Ch V Ravi Sankar, PVY Jayasree, Devana V.N Koteswara Rao , Mohammad Taj, Kolasani Rajkamal, Vegiraju Satya Sudha Hexagonal-Shaped Antenna with DGS for Band-notch Ultra-Wideband and V2X Applications Rahul Kumar Garg, Sarthak Singhal Research and design of multi-attitude DF-GNNRL simulation technology based on satellite downlink beam calculation Liping Qiao, Li Zhang, Lei Feng A Design of Microstrip Low-pass Filter using ground-plane coplanar waveguide (GCPW) Farah Mehdi Chemseddine, Elbouslemti Rahmouna, Vincent Didier Earthen Lamp Shaped DGS Dual Band Microstrip Patch Antenna for High Return Loss in Biomedical Application Sonam Gour, Amit Rathi Compact Inset-Fed Rectangular Patch antenna for C band Applications Albert William raj, K.S.Joseph Wilson Planar Antenna with Pattern Reconfigurability for IoT Applications Srinag A, S. Aruna, K.Srinivasa Naik Advanced Ultrawideband Patch Antenna for Wearable and WBAN Applications Raaunak Chaudhury, Bimal Raj Dutta A COMPACT 2X2 UWB MIMO ANTENNA WITH FUNNEL SHAPED STUB FOR ISOLATION ENHANCEMENT KARTHI J, Palanivelan Manickavelu, Mohanraj Sivagurunathan, Asokan Velu FLEXIBLE WIDE BAND TRAPEZOIDAL ANTENNA FOR ELECTROMAGENTIC HEAD IMAGING SYSTEM Vaithianathan V, Ramprabhu Sivasamy, RAMESH S, Chitra S Impact of supply voltage on SRAM cell power dissipation under different topologies Damodhar Rao M, Y.V. NARAYANA, V.V.K.D.V. PRASAD Defected Ground Square Patch Edge Truncated Polarization Reconfigurable Antenna Pritam Nikam, Jayendra Kumar, Akshay Bhosale, Achinta Baidya, Shahadev Hake An Asymmetrical Psi Shaped Multi-Band Antenna for Wireless Applications Penchala Reddy Sura, Padmaja Nimmagadda, Ch Jyotsna Rani, Tathababu Addepalli, Jagadeesh Babu Kamili, B.Y.V.N.R. Swamy Swamy, A Laxmana Siridhara, G JAGADEESWAR REDDY SMALL SCALE MIMO ANTENNA WITH HIGH ISOLATION FOR 5G COMMUNICATION DILIP KUMAR CHOUDHARY, Tanweer Ali, Rajendra Prasad P, Roshan Zameer Ahmed PERFORMANCE ANALYSIS OF ACHIEVABLE BIT RATES IN RIS-ASSISTED MASSIVE MIMO NETWORKS AT 28 GHZ BAND SHARINI DL, KANTHI M, RAVILLA DILLI EFFECT OF THICK VEGETATION COVER, BUILDING OBSTRUCTIONS, AND EARTH TERRAIN ON THE QUALITY AND PERFORMANCE OF THE GSM SIGNAL AT THE FEDERAL POLYTECHNIC ADO EKITI. Temitope John Alake, Ayodeji Bamisaye, Tolulope Tunji Oladimeji FOUR ELEMENT CIRCULAR PATCH MIMO ANTENNA WITH PROTRUDING GROUND STUB FOR 5G COMMUNICATION Rajalakshmi B, Chitra S DUAL-BAND BANDSTOP FILTERS BASED ON ULTRA THIN FREQUENCY SELECTIVE SURFACES Andrei Perov REAL-TIME IMPLEMENTATION OF LWT BASED NOVEL IR AND VI FUSION ALGORITHM USING RASPBERRY PI PLATFORM Lingamallu Naga Srinivasu, Sumanth Kumar Panguluri, Srinivasa Rao Kandula, Ponduri Vasanthi Fractal Based UWB-MIMO antenna with reconfigurable Band-Notching Characteristics Bharghava Punna, Mohd Sofiyan, N. Siddartha Reddy, Nagarani Bollam
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa Políticas de preços e assinaturas Begell House Contato Language English 中文 Русский Português German French Spain