Inscrição na biblioteca: Guest
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa
Telecommunications and Radio Engineering
SJR: 0.202 SNIP: 0.2 CiteScore™: 0.23

ISSN Imprimir: 0040-2508
ISSN On-line: 1943-6009

Volumes:
Volume 79, 2020 Volume 78, 2019 Volume 77, 2018 Volume 76, 2017 Volume 75, 2016 Volume 74, 2015 Volume 73, 2014 Volume 72, 2013 Volume 71, 2012 Volume 70, 2011 Volume 69, 2010 Volume 68, 2009 Volume 67, 2008 Volume 66, 2007 Volume 65, 2006 Volume 64, 2005 Volume 63, 2005 Volume 62, 2004 Volume 61, 2004 Volume 60, 2003 Volume 59, 2003 Volume 58, 2002 Volume 57, 2002 Volume 56, 2001 Volume 55, 2001 Volume 54, 2000 Volume 53, 1999 Volume 52, 1998 Volume 51, 1997

Telecommunications and Radio Engineering

DOI: 10.1615/TelecomRadEng.v78.i18.30
pages 1651-1657

WGM DIELECTRIC RESONATOR WITH CAPILLARY FOR MICROWAVE CHARACTERIZATION OF LIQUIDS

Alexey Gubin
O.Ya. Usikov Institute for Radio Physics and Electronics, National Academy of Sciences of Ukraine, 12 Academician Proskura St., Kharkiv 61085, Ukraine
A. A. Lavrinovich
O.Ya. Usikov Institute for Radio Physics and Electronics, National Academy of Sciences of Ukraine, 12 Academician Proskura St., Kharkiv 61085, Ukraine
I. А. Protsenko
O.Ya. Usikov Institute for Radiophysics and Electronics of the National Academy of Sciences of Ukraine 12, Academician Proskura St., Kharkiv 61085, Ukraine
A. A. Barannik
O.Ya. Usikov Institute for Radiophysics and Electronics of the National Academy of Sciences of Ukraine 12, Academician Proskura St., Kharkiv 61085, Ukraine
S. Vitusevich
Forschungszentrum Jülich GmbH, Institute of Complex Systems, Bioelectronic (ICS-8), Wilhelm-Johnen-Straße, D-52425 Jülich, Germany

RESUMO

The microwave characterization technique for the investigation of liquids of small volumes is presented. The technique is developed on the basis of a high-quality whispering gallery mode quartz resonator with a capillary placed in the hole of the resonator in the axial direction. The optimal inner capillary diameter was determined by experimental data obtained in Ka-band for the aqueous solution of glucose filling. The measurements of the bovine serum albumin and lactalbumin solutions confirm the applicability of the technique for studies of the biological liquids.

Referências

  1. Chen, L.F., Ong, C.K., Neo, C.P., Varadan, V.V., and Varadan, Vijay K., (2004) Microwave Electronics: Measurement and Materials Characterization, Wiley Press.

  2. Afsar, M.N. and Button, K.J., (1985) Millimeter-wave dielectric measurement of materials, Proc. IEEE, 73, pp. 131-153.

  3. Piuzzi, E., Merla, C., Cannazza, G., Zambotti, A. et al., (2013) A comparative analysis between customized and commercial systems for complex permittivity measurements on liquid samples at microwave frequencies, IEEE Trans. on Instrumentation and Measurement, 62, pp. 1034-1046.

  4. Keysight Technologies Basics of Measuring the Dielectric Properties of Materials, Application Note 5989-2589EN, Keysight, USA.

  5. Gubin, A.I. and Vitusevich, S., (2017) THz for CBRN and Explosives Detection and Diagnosis, Ed. by Mauro F. Pereira and Oleksiy Shulika, NATO Science for Peace and Security ser.- B: Physics and Biophysics, Springer, pp 37-42.

  6. Hallenga, K., (1975) New method for very sensitive dielectric difference measurements on high-loss liquids at microwave frequencies, Rev. Sci. Instrum., 46(12), pp.1691-1696.

  7. Shaforost, O.N., Klein, N., Vitusevich, S.A., Barannik, A.A., and Cherpak, N.T. (2009) High- sensitive microwave characterisation of organic molecule solutions of nanolitre volume, Appl. Phys. Lett, 94, p. 112901.

  8. Shaforost, E.N., Klein, N., Gubin, A.I., Barannik, A.A., and Klushin, A.M. (2009) Microwave- millimeter wave WGM resonators for evanescent sensing of nanolitre liquid substances, Proc. of 39th European Microwave Conference EuMC'09, pp. 45-48.

  9. Nikolic-Jaric, M., Romanuik, S.F., Ferrier, G.A., Bridges, G.E. et al., (2009) Microwave frequency sensor for detection of biological cells in microfluidic channels, Biomicrofluidics, 3, pp. 034103.

  10. Gubin, A.I., Barannik, A.A., Protsenko, I.A., Cherpak, N.T., Offenhaeusser, A., and Vitusevich, S., (2013) Biochemical liquids permittivity characterization technique based on whispering-gallery mode resonator with the microfluidic channel, Proc. of the 43rd European Microwave Conference EuMC'13, pp. 314-317.

  11. Gubin, A.I., Barannik, A.A., Cherpak, N.T., Protsenko, I.A., Offenhaeusser, A., and Vitusevich, S., (2015) Whispering-gallery-mode resonator technique with microfluidic channel for permittivity measurement of liquids, IEEE Trans. Microw. Theory Techn., 63, pp. 2003-2009.

  12. Gubin, A.I., Barannik, A.A., Cherpak, N.T., Vitusevich, S., Offenhaeusser, A., and Klein, N., (2011) Whispering-gallery mode resonator technique for characterization of small volumes of biochemical liquids in the microfluidic channel, Proc. of 41th European Microwave Conference EuMC'11, pp.615-618.

  13. Barannik, A., Cherpak, N., Kirichenko, A., Prokopenko, Y., Vitusevich, S., and Yakovenko, V., (2017) Whispering gallery mode resonators in microwave physics and technologies, International Journal of Microwave and Wireless Technologies, 9, pp. 781-796.

  14. Cherpak, N.T., Lavrinovich, A.A., and Shaforost, E.N., (2006) Quasi-optical dielectric resonators with small cuvette and capillary filled with ethanol-water mixtures, International Journal of Infrared and Millimeter Waves, 27, pp. 115-133.

  15. Gubin, A.I., Lavrinovich, A.A., and Cherpak, N.T., (2006) Dielectric resonators with "whispering-gallery" waves in investigations of small volume binary solutions, Ukr. J. Phys., 51(7.), pp. 723-727, (in Ukrainian).

  16. Gubin, A.I., Protsenko, I.A., Barannik, A.A., Hlukhova, H., Cherpak, N.T., and Vitusevich, S., (2018) Liquids Microwave Characterization Technique Based on Quartz WGM Resonator with Microfluidic Chip, Proc. of the 48th European Microwave Conference EuMC'18, pp. 206-209.

  17. Jha, D.K., (2004) Text Book of Heat, DPH Physics Ser., Discovery Publishing House.