Inscrição na biblioteca: Guest
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa
Telecommunications and Radio Engineering
SJR: 0.202 SNIP: 0.2 CiteScore™: 0.23

ISSN Imprimir: 0040-2508
ISSN On-line: 1943-6009

Volumes:
Volume 78, 2019 Volume 77, 2018 Volume 76, 2017 Volume 75, 2016 Volume 74, 2015 Volume 73, 2014 Volume 72, 2013 Volume 71, 2012 Volume 70, 2011 Volume 69, 2010 Volume 68, 2009 Volume 67, 2008 Volume 66, 2007 Volume 65, 2006 Volume 64, 2005 Volume 63, 2005 Volume 62, 2004 Volume 61, 2004 Volume 60, 2003 Volume 59, 2003 Volume 58, 2002 Volume 57, 2002 Volume 56, 2001 Volume 55, 2001 Volume 54, 2000 Volume 53, 1999 Volume 52, 1998 Volume 51, 1997

Telecommunications and Radio Engineering

DOI: 10.1615/TelecomRadEng.v76.i19.40
pages 1719-1748

DENOISING OF MULTICHANNEL IMAGES WITH REFERENCES

V. V. Lukin
National Aerospace University (Kharkiv Aviation Institute), 17 Chkalov St., Kharkiv, 61070, Ukraine
S. K. Abramov
Department of Transmitters, Receivers and Signal Processing, National Aerospace University (Kharkiv Aviation Institute), 17 Chkalov St., Kharkiv, 61070, Ukraine
V. V. Abramova
National Aerospace University (Kharkiv Aviation Institute), 17, Chkalov St., Kharkiv, 61070, Ukraine
J. T. Astola
Tampere University of Technology, Signal Processing Laboratory, P. O. Box 553, FIN-33101, Tampere, Finland
Karen O. Egiazarian
Tampere University, Tampere, 33720, Finland

RESUMO

In this paper, we study a problem of filtering noisy component image of a multichannel image, under assumption that the multichannel data contain almost noise-free component image(s) highly correlated with the noisy one. Our proposed denoising approach is based on three-dimensional (3D) representation of the noisy and reference images. One dimensional discrete cosine transform (DCT) is applied to decorrelate images and then the obtained data are processed by the BM3D filter in the component-wise manner. Our approach has another option where the modified BM3D filter is applied. Performances of these methods are analyzed for ten test images, several values of noise variance and different quality metrics. It is demonstrated that performance depends on a choice of the reference images and the way they are pre-processed. In the case of proper pre-processing, improvements of the metrics PSNR and PSN-RHVS-M can reach up to 3-7 dB compared to the component-wise BM3D filtering of the noisy component image. Examples of processing real-life hyperspectral images are presented with the recommendations on how to choose and pre-process reference images. High efficiency and relative simplicity of the proposed approach is demonstrated.


Articles with similar content:

DCT-BASED DENOISING IN MULTICHANNEL IMAGING WITH REFERENCE
Telecommunications and Radio Engineering, Vol.75, 2016, issue 13
V. V. Lukin, S. K. Abramov, J. T. Astola, Karen O. Egiazarian, V. V. Abramova
DENOISING OF MULTICHANNEL IMAGES WITH NONLINEAR TRANSFORMATION OF REFERENCE IMAGE
Telecommunications and Radio Engineering, Vol.77, 2018, issue 9
V. V. Lukin, S. K. Abramov, Karen O. Egiazarian, V. V. Abramova
CONTRAST ENHANCEMENT IN GRAYSCALE DIGITAL IMAGES APPLYING ATOMIC FUNCTIONS IN FUZZY LOGIC
Telecommunications and Radio Engineering, Vol.72, 2013, issue 19
C. M. Vargas-Martinez, Victor Filippovich Kravchenko, Volodymyr Ponomaryov, Juan Carlos Sanchez-Garcia
3D DCT Based Filtering of Color and Multichannel Images
Telecommunications and Radio Engineering, Vol.67, 2008, issue 15
P. T. Koivisto, N. N. Ponomarenko, A. A. Zelensky
Automatic Robust Procedure for Radar Image Preliminary Analysis and Filtering
Telecommunications and Radio Engineering, Vol.58, 2002, issue 5&6
N. N. Ponomarenko, S. K. Abramov, A. A. Zelensky