Inscrição na biblioteca: Guest
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa
Telecommunications and Radio Engineering
SJR: 0.202 SNIP: 0.2 CiteScore™: 0.23

ISSN Imprimir: 0040-2508
ISSN On-line: 1943-6009

Volumes:
Volume 78, 2019 Volume 77, 2018 Volume 76, 2017 Volume 75, 2016 Volume 74, 2015 Volume 73, 2014 Volume 72, 2013 Volume 71, 2012 Volume 70, 2011 Volume 69, 2010 Volume 68, 2009 Volume 67, 2008 Volume 66, 2007 Volume 65, 2006 Volume 64, 2005 Volume 63, 2005 Volume 62, 2004 Volume 61, 2004 Volume 60, 2003 Volume 59, 2003 Volume 58, 2002 Volume 57, 2002 Volume 56, 2001 Volume 55, 2001 Volume 54, 2000 Volume 53, 1999 Volume 52, 1998 Volume 51, 1997

Telecommunications and Radio Engineering

DOI: 10.1615/TelecomRadEng.v77.i15.70
pages 1365-1374

NOVEL COAXIAL CABLE IMPLEMENTATION OF MINIATURIZED WILKINSON POWER DIVIDER AND QUADRATURE HYBRID COUPLER FOR VHF APPLICATIONS

Makarand Kulkarni
K.J. Somaiya College of Engineering, Vidyavihar, Mumbai- 400077, India and Research Scholar of Dept. of Electrical Engineering, Veermata Jijabai Technological Institute (VJTI),H. R. Mahajani Marg, Matunga, Mumbai-400019, India
A. Cheeran
Department of Electrical Engineering, Veermata Jijabai Technological Institute, HR Mahajani Marg, Matunga, Mumbai-400031, Maharashtra, India
K. Ray
Dept. of Electronics Engineering, Defense Institute of Advanced Technology (DIAT), Ministry of Defence, Govt. of India, Pune-411025, India
S. Kakatkar
Atmospheric Microwave System (AMS) Division, Society for Applied Microwave Electronics Engineering and Research (SAMEER), IIT Campus, Mumbai-400076, India

RESUMO

In this article, novel implementations of Wilkinson Power Divider (WPD) and Quadrature (90°) Hybrid Coupler (QHC) have been proposed using series and parallel combination of coaxial cables for Very High Frequency (VHF) applications. The proposed method of implementation using coaxial cables is advantageous in terms of its simplicity and it can work at higher power levels with proper choice of cables. Moreover, the fine tuning of the designed frequency for the proposed devices can be easily possible by merely trimming the cable length which is not easy with microstrip lines once its PCB fabrication is done. In addition, due to the use of flexible coaxial cables, there is good scope for miniaturization of the respective device. The proposed WPD and QHC show good matching at all the ports and very good amplitude balance, relative phase difference and isolation between the output ports. The proposed WPD and QHC show overall favorable performance fractional bandwidth respectively of 35.76% and 11.15%. In addition, the reduction in the lengths of the quarter wavelength transmission line sections of WPD is upto 55% and an overall size reduction of 23.50% has been achieved in QHC as compared to that of their respective conventional microstrip line designs, with potential for further miniaturization.


Articles with similar content:

DESIGN AND DEVELOPMENT OF A COMPACT 1:4 UNEQUAL WILKINSON POWER DIVIDER USING COAXIAL CABLES FOR VHF RADAR APPLICATIONS
Telecommunications and Radio Engineering, Vol.78, 2019, issue 14
K. Ray, Makarand Kulkarni, S. Kakatkar, A. Cheeran
MINIATURIZED HALF MODE SUBSTRATE INTEGRATED WAVEGUIDE LEAKY WAVE ANTENNA WITH OPEN STOP BAND SUPPRESSION FOR Ku-BAND APPLICATIONS
Telecommunications and Radio Engineering, Vol.78, 2019, issue 7
Rahul Agrawal, P. Belwal, S. Gupta
DEVELOPMENT AND STUDYING OF THE CHANNEL FOR FORCED TUNING OF THE DOPPLER TRACKING FILTER OF THE FM-SIGNAL, REFLECTED FROM A SUBSTRATE SURFACE
Telecommunications and Radio Engineering, Vol.75, 2016, issue 15
O.I. Kulyk, K. A. Shcherbina, V. V. Pechenin , М. А. Vonsovich
A SUPER-WIDEBAND BASIC ELEMENT FOR LOW-FREQUENCY ANTENNAS OF RADIO TELESCOPES: PART 1. PRINCIPLES OF REALIZATION
Radio Physics and Radio Astronomy, Vol.2, 2011, issue 2
I. N. Zhouck, V. P. Bovkoon, Alexandr A. Konovalenko, A. A. Gridin, I. N. Boobnov
BAND-STOP FILTER ON H-SHAPED SLOT RESONATOR IN THE MICROSTRIP LINE SHIELDING PLANE
Telecommunications and Radio Engineering, Vol.74, 2015, issue 19
Yu. V. Rassokhina, V. G. Kryzhanovskyi