Inscrição na biblioteca: Guest
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa
Telecommunications and Radio Engineering
SJR: 0.202 SNIP: 0.2 CiteScore™: 0.23

ISSN Imprimir: 0040-2508
ISSN On-line: 1943-6009

Volumes:
Volume 78, 2019 Volume 77, 2018 Volume 76, 2017 Volume 75, 2016 Volume 74, 2015 Volume 73, 2014 Volume 72, 2013 Volume 71, 2012 Volume 70, 2011 Volume 69, 2010 Volume 68, 2009 Volume 67, 2008 Volume 66, 2007 Volume 65, 2006 Volume 64, 2005 Volume 63, 2005 Volume 62, 2004 Volume 61, 2004 Volume 60, 2003 Volume 59, 2003 Volume 58, 2002 Volume 57, 2002 Volume 56, 2001 Volume 55, 2001 Volume 54, 2000 Volume 53, 1999 Volume 52, 1998 Volume 51, 1997

Telecommunications and Radio Engineering

DOI: 10.1615/TelecomRadEng.v72.i15.10
pages 1361-1379

EIGENMODES AND RESONANCE PROPERTIES OF ONE‐DIMENSIONALLY PERIODIC METALLIC BAR GRATINGS. PART 1: CLASSICAL GRATING

Andrei Olegovich Perov
A.Ya. Usikov Institute for Radiophysics and Electronics of the National Academy of Sciences of Ukraine 12, Academician Proskura St., Kharkiv 61085, Ukraine
A. A. Kirilenko
O.Ya. Usikov Institute for Radio Physics and Electronics, National Academy of Sciences of Ukraine, 12 Academician Proskura St., Kharkiv 61085, Ukraine
S. L. Senkevich
A. Usikov Institute of Radio Physics and Electronics, National Academy of Sciences of Ukraine

RESUMO

The interest shown today toward resonance properties of perforated metal gratings has been renewed owing to the effect known as the "enhanced transmission phenomena" which was investigated, interpreted and found promising for practical applications. Based on the works of the V. Shestopalov school, the paper is aimed at analyzing properties of one‐dimensionally periodic gratings, i.e. at investigating eigenmode spectra and principles of their formation which are determined in particular by the structure of the grating period, and then at analyzing the impact of these spectra on the resonance characteristics. The effects arising in the case of scattering of an H‐polarized plane wave by a one‐dimensionally periodic metallic bar grating are considered. Specific features of the resonance interaction are treated in terms of the spectral theory of open periodic resonant cavities. A classification is suggested for the spectra of classical and compound gratings. The spectrum of lower‐order eigenmodes of the classical grating is investigated in dependence on the grating geometry, and motion of the eigenfrequencies along a multisheeted Riemann surface is analyzed as the grating thickness decreases to zero. It is shown that the limiting points of frequencies of antisymmetric modes correspond to the cutoff points of the higher‐order Floquet harmonics; the greater the number of eigenmode field variations, the higher order of the harmonic. Eigenfrequency paths on upper sheets and regularities of their crossing the real axis where the wave packet conversion takes place are investigated. The resonance behavior of the grating is described in terms of the unified spectral theory which makes it possible not only to establish the interrelation between different resonance effects but also to determine the source of such a behavior conditioned by excitation of certain eigenmodes.


Articles with similar content:

EIGENMODES AND RESONANCE PROPERTIES OF ONE-DIMENSIONALLY PERIODIC METALLIC BAR GRATINGS. PART 2: COMPOUND GRATING
Telecommunications and Radio Engineering, Vol.72, 2013, issue 16
Andrei Olegovich Perov, A. A. Kirilenko, S. L. Senkevich
Eigen Modes of “Dielectric Layer - Ribbon Diffraction Grating” Electrodynamic System
Telecommunications and Radio Engineering, Vol.65, 2006, issue 1-5
Yu. B. Sidorenko
RESONANCE INCREASE OF THE Q−FACTOR OF MAGNETIC-TYPE EIGENOSCILLATIONS IN AN OPEN RESONATOR WITH BALL-SHAPED DIELECTRIC INSERTION
Telecommunications and Radio Engineering, Vol.73, 2014, issue 11
Yu. V. Svishchov
Characteristics of Normal Waves in Elastic-Fluid Cylindrical Waveguide
International Journal of Fluid Mechanics Research, Vol.29, 2002, issue 6
G. L. Komissarova
SURFACE ELECTROMAGNETIC WAVES IN THE PLASMA‐LIKE MEDIUM BORDERING A PERIODIC LAYERED STRUCTURE
Telecommunications and Radio Engineering, Vol.72, 2013, issue 14
Yu. O. Averkov, N. N. Beletskii, Vladimir M. Yakovenko