Inscrição na biblioteca: Guest
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa
Journal of Environmental Pathology, Toxicology and Oncology
Fator do impacto: 1.241 FI de cinco anos: 1.349 SJR: 0.519 SNIP: 0.613 CiteScore™: 1.61

ISSN Imprimir: 0731-8898
ISSN On-line: 2162-6537

Journal of Environmental Pathology, Toxicology and Oncology

DOI: 10.1615/JEnvironPatholToxicolOncol.v28.i1.60
pages 53-61

Radioprotective Effects of Aloe Vera Leaf Extract on Swiss Albino Mice against Whole-Body Gamma Irradiation

Prashasnika Gehlot
Radiation and Cancer Biology Laboratory, Department of Zoology, University of Rajasthan, Jaipur 302004, India
Pradeep Kumar Goyal
Radiation and Cancer Biology Laboratory, Department of Zoology, University of Rajasthan, Jaipur - 302 004, India

RESUMO

The skin, being a cell-renewal system, is one of the first organs to be affected in total-body irradiation during radiotherapy. An attempt has been made in the present study to explore radiation-induced biochemical alterations caused by whole-body gamma irradiation and their modulation in Swiss albino mice by Aloe vera leaf extract (AVE). Mice were selected for this study from an inbreed colony and divided into four different groups: I (double-distilled water-treated group): considered as normal; II (Aloe vera-treated group): the animals were administered 1 g/kg body-wt/day Aloe vera leaf extract; III (radiation-treated group): the animals were exposed to 6 Gy gamma radiation at the dose rate of 0.96 Gy/min; and IV (combination group): animals were administered Aloe vera leaf extract continuously for 15 consecutive days, and on the 15th day they were irradiated to 6 Gy gamma radiation after 30 minutes of extract administration. The animals from the above groups were autopsied after 6 hours, 24 hours, and at 3, 7, 14, and 21 days of radiation. Biochemical estimations of DNA, lipid peroxidation, glutathione, catalase, and superoxide-dismutase were made. Total DNA, catalase, superoxide dismutase (SOD) activity in the skin, and glutathione (GSH) in the liver and blood significantly decreased compared to normal, but lipid peroxidation (LPO) in the liver and blood increased in the irradiated control group. In contrast, in experimental animals, DNA, catalase, and SOD in the skin and GSH in the liver and blood increased significantly, whereas LPO in the liver and blood decreased in comparison to irradiated control animals. Thus, Aloe vera leaf extract is found to have damage-resistant properties against radiation-induced biochemical alterations in Swiss albino mice.


Articles with similar content:

Post Treatment Effect of Grewia asiatica against Radiation-Induced Biochemical Alterations in Swiss Albino Mice
Journal of Environmental Pathology, Toxicology and Oncology, Vol.27, 2008, issue 2
Smita Singh, K. V. Sharma, Muktika Ahaskar, Rashmi Sisodia
Protective Role of Perillic Acid Against Radiation−Induced Oxidative Stress, Cytokine Profile, DNA Damage, and Intestinal Toxicity in Mice
Journal of Environmental Pathology, Toxicology and Oncology, Vol.29, 2010, issue 3
P. Pratheeshkumar, Girija Kuttan, T.J. Raphael
Protective Effect of Alstonia scholaris Against Radiation-Induced Clastogenic and Biochemical Alterations in Mice
Journal of Environmental Pathology, Toxicology and Oncology, Vol.29, 2010, issue 2
Pradeep Kumar Goyal, Swafiya Jahan
Protection of Ionizing Radiation-Induced Cytogenetic Damage by Hydroalcoholic Extract of Cynodon Dactylon in Chinese Hamster Lung Fibroblast Cells and Human Peripheral Blood Lymphocytes
Journal of Environmental Pathology, Toxicology and Oncology, Vol.27, 2008, issue 2
Dinesh Upadhya, Bola Sadashiva Satish Rao, Satish Kumar Adiga
The Influence of Gingerol Treatment on Aluminum Toxicity in Rats
Journal of Environmental Pathology, Toxicology and Oncology, Vol.34, 2015, issue 1
Sadhana Shrivastava