Inscrição na biblioteca: Guest
Nanoscience and Technology: An International Journal

Publicou 4 edições por ano

ISSN Imprimir: 2572-4258

ISSN On-line: 2572-4266

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.3 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.7 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.7 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00023 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.11 SJR: 0.244 SNIP: 0.521 CiteScore™:: 3.6 H-Index: 14

Indexed in

THERMOMAGNETIC FIELD EFFECTS ON STABILITY ANALYSIS OF A SINGLE-WALLED FLUID-CONVEYING CARBON NANOTUBE RESTED ON POLYMER MATRIX

Volume 12, Edição 2, 2021, pp. 31-57
DOI: 10.1615/NanoSciTechnolIntJ.2021033910
Get accessGet access

RESUMO

This paper presents the study of nonlocal thermo-elastic waves in a fluid-conveying single-walled carbon nanotube resting on polymer matrix via longitudinal magnetic effect. The analytical formulation is developed based on Eringen's nonlocal elasticity theory. The governing equations that contains partial differential equations for single-walled carbon nanotube is derived by considering thermal field and longitudinal Lorenz magnetic force. The ultrasonic wave propagation analysis is carried out by spectral analysis method. The polymer elastic matrix is considered as a function of temperature change. The computed nondimensional wave frequency, phase velocity, and group velocity are investigated and are presented in the form of dispersion curves. Table values are presented for different physical values and are compared with exiting literature.

Referências
  1. Benzair, A., Besseghier, A., Heireche, H., Bousahla, A.A., and Tounsi, A., Nonlinear Vibration Properties of a Zigzag Single-Walled Carbon Nanotube Embedded in a Polymer Matrix, Adv. Nano. Res., vol. 3, no. 1, pp. 29-37, 2015, https://doi.org/10.12989/anr.2015.3.1.029.

  2. Bessegheir, A., Tourni, A., Hauari, M.S.A., Benzair, A., Boumia, L., and Heireche, H., Thermal Effect on Wave Propagation in Double-Walled Carbon Nanotubes Embedded in a Polymer Matrix Using Nonlocal Elasticity, Physica E, vol. 43, pp. 1379-1386, 2011, https://doi: 10.1016/j.physe.2011.03.008.

  3. Chang, T.P., Thermal-Mechanical Vibration and Instability of a Fluid-Conveying Single-Walled Carbon Nanotube Embedded in an Elastic Medium Based on Nonlocal Elasticity Theory, Appl. Math. Model, vol. 36, pp. 1964-1973, 2012, https://doi.org/10.1016/j.apm.2011.08.020.

  4. Chemi, A., Heireche, H., Zidour, M., Rakrak, K., and Bousahla, A.A., Critical Buckling Load of Chiral Double-Walled Carbon Nanotube Using Nonlocal Theory Elasticity, Adv. Nano. Res., vol. 3, no. 4, pp. 193-206, 2015, https://doi.org/10.12989/anr.2015.3.4.193.

  5. Ebrahimi, F. and Barati, M.R., An Exact Solution For Buckling Analysis of Embedded Piezoelectro-Magnetically Actuated Nanoscale Beams, Adv. Nano. Res., vol. 4, no. 2, pp. 65-84, 2016a, http://dx.doi.10.12989/anr.2016.4.2.065.

  6. Ebrahimi, F. and Barati, M.R., Analytical Solution for Nonlocal Buckling Characteristics of Higher-Order Inhomogeneous Nanosize Beams Embedded in Elastic Medium, Adv. Nano. Res., vol. 4, no. 3, pp. 229-249, 2016b, http://dx.doi.org/10.12989/anr.2016.4.3.229.

  7. Ebrahimi, F. and Habibi, S., Low-Velocity Impact Response of Laminated FG-CNT Reinforced Composite Plates in Thermal Environment, Adv. Nano. Res., vol. 5, no. 2, pp. 69-97, 2017, http://dx.doi.org/10.12989/anr.2017.5.2.069.

  8. Ebrahimi, F. and Jafari, A., Investigating Vibration Behavior of Smart Imperfect Functionally Graded Beam Subjected to Magnetic-Electric Fields Based on Refined Shear Deformation Theory, Adv. Nano. Res, vol. 5, no. 4, pp. 281-301, 2017, https://doi.org/10.12989/anr.2017.5.4.281.

  9. Ebrahimi, F., Babaei, R., and Shaghaghi, G.R., Vibration Analysis Thermally Affected Viscoelastic Nanosensors Subjected to Linear Varying Loads, Adv. Nano. Res., vol. 6, no. 4, pp. 399-422, 2018, http://dx.doi.org/10.12989/anr.2018.6.4.399.

  10. Ebrahimi, F., Karimiasl, M., and Mahesh, V., Vibration Analysis of Magneto-Flexo-Electrically Actuated Porous Rotary Nanobeams Considering Thermal Effects via Nonlocal Strain Gradient Elasticity Theory, Adv. Nano. Res., vol. 7, no. 4, pp. 221-229, 2019. https://doi.org/10.12989/anr.2019.7.4.221.

  11. Elmerabet, A.H., Heireche, H., Tounsi, A., and Semmah, A., Buckling Temperature of a Single-Walled Boron Nitride Nanotube Using a Novel Nonlocal Beam Model, Adv. Nano. Res., vol. 5, no. 1, pp. 1-12, 2017, http://dx.doi.org/10.12989/anr.2017.5.1.001.

  12. Eringen, A.C., On Differential Equations of Nonlocal Elasticity and Solutions of Screw Dislocation and Surface Waves, J. Appl. Phys., vol. 54, pp. 4703-4710, 1983, https://doi.org/10.1063/1. 332803.

  13. Govindjee, S. and Sackman, J.L., On the Use of Continuum Mechanics to Estimate the Properties of Nanotubes, Solid State Commun., vol. 110, no. 4, pp. 227-230, 1999, http://10.1016/S0038-1098(98)00626-7.

  14. Hao, X., Qiang, H., and Xiaohu, Y., Buckling of Defective Single-Walled and Double-Walled Carbon Nanotubes under Axial Compression by Molecular Dynamics Simulation, Compos. Sci. Technol., vol. 68, nos. 7-8, pp. 1809-1814, 2008, https://doi.org/10.1016/j.compscitech.2008.01.013.

  15. Harik, V.M., Mechanics of Carbon Nanotubes Applicability of the Continuum-Beam Models, Comput. Mater. Sci, vol. 24, pp. 328-342, 2002. DOI: 10.1016/S0927-0256(01)00255-5.

  16. Harik, V.M., Ranges of Applicability for the Continuum Beam Model in the Mechanics of Carbon Nanotubes and Nanorods, Solid State Commun., vol. 20, pp. 331-335, 2001, http://doi.10.1016/S0038-1098(01)00383-0.

  17. Heireche, H., Tounsi, A., and Benzair, A., Scale Effect on Wave Propagation of Double-Walled Carbon Nanotubes with Initial Axial Loading, Nanotechnology, vol. 19, 185703, 2008a, http://doi.10.1088/0957-4484/19/18/185703/meta.

  18. Heireche, H., Tounsi, A., Benzair, A., Maachou, M., and Addabedia, E.A., Sound Wave Propagation in Single-Walled Carbon Nanotubes Using Nonlocal Elasticity, Physica E, vol. 40, pp. 2791-2799, 2008b, http://doi.10.1010/j.physe.2007.12.021.

  19. Kheroubi, B., Benzair, A., Tounsi, A., and Semmah A., A New Refined Nonlocal Beam Theory Accounting for Effect of Thickness Stretching in Nanoscale Beams, Adv. Nano. Res., vol. 4, no. 4, pp. 251-264, 2016, http://dx.doi.org/10.12989/anr.2016.4A251.

  20. Kiani, K., Characterization of Free Vibration of Elastically Supported Double-Walled Carbon Subjected to a Longitudinally Varying Magnetic Field, Acta Mechanica, vol. 224, no. 12, pp. 3319-3151, 2013, http://doi: 10.1007/s00707-013-0937-8.

  21. Kroto, H.W., Heath, J.R., O'Brien, S.C., Curl, R.F., and Smalley, R.E., C60: Buckminsterfullerene, Nature, vol. 318, pp. 162-163, 1985, https://articles/318162a0.

  22. Lee, L.H. and Chang, W.J., Vibration Analysis of Fluid Conveying Double-Walled Carbon Nanotubes Based on Nonlocal Elastic Theory, J. Phys. Condens. Matter, vol. 43, 115302, 2009, http://doi.10.1088/0953-8984/21/11/115302/meta.

  23. Li, W. and Wang, Y.N., Electromagnetic Wave Propagation in Single-Walled Carbon Nanotube, Phys. Lett. B, vol. 333, pp. 303-309, 2004, https://doi.org/10.1016Zj.physleta.2004.10.048.

  24. Lijima, S., Helical Microtubes of Graphite Carbon, Nature, vol. 354, pp. 56-58, 1991, https://articles/354056a0.

  25. Lu, P., Lee, H.P., Lu, C., and Zhang, P.Q., Dynamic Properties of Flexural Beams Using a Nonlocal Elasticity Model, J. Appl. Phys, vol. 9, 073510, 2006, https://doi.org/10.1063/L2189213.

  26. Murmu, T., McCarthy, M.A., and Adhikari, S., Vibration Response of Double-Walled Carbon Nanotubes Subjected to an Externally Applied Longitudinal Magnetic Field: A Nonlocal Elasticity Approach, J. Sound. Vib., vol. 331, pp. 5069-5086, 2012, http://dx.doi.org/ 10.1016/j.jsv.2012.06.005.

  27. Narendar, S. and Gopalakrishnan, S., Temperature Effect on Wave Propagation in Nanoplates, Compos. Part B-Eng, vol. 43, pp. 1275-1281, 2012, http://doi: 10.1016/j.compositesb.2011.11.029.

  28. Narendar, S., Gupta, S.S., and Gopalakrishnan, S., Longitudinal Magnetic Field Effect on Nonlocal Ultrasonic Vibration Analysis of Single-Walled Carbon Nanotube Based on Wave Propagation Approach, Adv. Sci. Lett., vol. 4, no. 11, pp. 3382-3389, 2011, http://dx.doi.org/10.1166/asl.2011.1878.

  29. Natsuki, T., Ni, Q.Q., and Endo, M., Wave Propagation in Single and Double-walled Carbon Nanotube Filled with Fluids, J. Appl. Phys, vol. 101, 034319, 2007, http://doi10.1063/1.2432025.

  30. Ni, B., Sinnott, S.B., Mikulski, P.T., and Harrison, J.A., Compression of Carbon Nanotubes Filled with C60, CH4, or Ne: Predictions from Molecular Dynamics Simulations, Phys. Rev. Lett., vol. 88, no. 20, 205505, 2002, http://doi:10.1103/physrevlett.88.205505.

  31. Popov, V.N. and Doren, V.E.V., Elastic Properties of Single-Walled Carbon Nanotubes, Phys. Rev. B, vol. 61, pp. 3078-3084, 2010, https://doi.org/10.1103/PhysRevB.61.3078.

  32. Reddy, C.D., Lu, C., Rajendran, S., and Liew, K.M., Free Vibration Analysis of Fluid-Conveying Single-Walled Carbon Nanotubes, Appl. Phys. Lett., vol. 90, pp. 133-122, 2007, https://doi.org/10.1063/L2717554.

  33. Reddy, J.N. and Pang, S.D., Nonlocal Continuum Theories of Beams for the Analysis of Carbon Nanotubes, J. Appl. Phys, vol. 103, 023511, 2008, http://doi.org/10.1063/L2833431.

  34. Timoshenko, S.P., LXVI. On the Correction for Shear of the Differential Equation for Transverse Vibrations of Prismatic Bars, The London, Edinburgh, and Dublin Philosophical Magazine and Journal Science, vol. 41, no. 245, pp. 744-746, 2009, https://doi.org/10.1080/14786442108636264.

  35. Tounsi, A., Benguediab, S., Adda Bedia, E.A., Semmah, A., and Zidour, M., Nonlocal Effects on Thermal Buckling Properties of Double-Walled Carbon Nanotubes, Adv. Nano Res., vol. 1, no. 1, pp. 1-11, 2013, https://doi.org/10.12989/anr.2013.1.1.001.

  36. Treacy, M.M., Ebbesen, T.W., and Gibson. J.M., Exceptionally High Young's Modulus Observed for Individual Carbon Nanotubes, Nature, vol. 381, pp. 678-680, 1996, https://articles/381678a0.

  37. Wang, Q., Zhou, G.Y., and Lin, K.C., Scale Effect on Wave Propagation of Double-Walled Carbon Nanotubes, Int. J. Solids Struct., vol. 43, no. 20, pp. 6071-6084, 2006, http:doi: 10.1016/j.ijsolstr.2005.11.00.

  38. Wang, X., Zhang, Y.C., Xia, X.H., and Huang, C.H., Effective Bending Modulus of Carbon Nanotubes with Rippling Deformation, Int. J. Solids Struct., vol. 41, no. 22, pp. 6429-6439, 2004, http://doi:10.1016/j.ijsolstr.2004.04.038.

  39. Wang, X.Y. and Wang, X., Numerical Simulation for Bending Modulus of Carbon Nanotubes and Some Explanations for Experiment, Compos. Part B, Eng., vol. 35, pp. 79-86, 2004, http://doi: 10.1016/S1359-8368(03)00084-2.

  40. Yao, X. and Han, Q., Buckling Analysis of Multi-Walled Carbon Nanotubes under Torsional Load Coupling with Temperature Change, J. Eng. Mater Technol., vol. 128, no. 3, pp. 419-427, 2006, http://doi: 10.1115/1.2203102.

  41. Yoon, J. and Ru, C.Q., Vibration of an Embedded Multiwall Carbon Nanotube, Compos. Sci. Technol, vol. 63, no. 11, pp. 1533-1542, 2003, https://doi.org/10.1016/S0266-3538(03)00058-7.

  42. Zhang, C.L. and Shen, H.S., Temperature-Dependent Elastic Properties of Single-Walled Carbon Nanotubes: Prediction from Molecular Dynamics Simulation, Appl. Phys. Lett., vol. 89, no. 8, 081904, 2006, https://doi.org/10.106371.2336622.

  43. Zhang, Y.C. and Wang, X., Thermal Effects on Interfacial Stress Transfer Characteristics of Carbon Nanotubes/Polymer Composites, Int. J. Solids Struct., vol. 42, pp. 5399-5412, 2005, https://doi.org/10.1016/j.ijsolstr.2005.02.038.

  44. Zhang, Y.Q., Liu, G.R., and Xie, X.Y., Free Transverse Vibrations of Double-Walled Carbon Nanotubes Using a Theory of Nonlocal Elasticity, Phys. Rev. B, vol. 71, 195404, 2005, https://doi.org/ 10.1103/physrevb.71. 195404.

Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa Políticas de preços e assinaturas Begell House Contato Language English 中文 Русский Português German French Spain