Inscrição na biblioteca: Guest
International Journal of Energetic Materials and Chemical Propulsion

Publicou 6 edições por ano

ISSN Imprimir: 2150-766X

ISSN On-line: 2150-7678

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 0.7 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 0.7 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.1 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00016 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.18 SJR: 0.313 SNIP: 0.6 CiteScore™:: 1.6 H-Index: 16

Indexed in

EFFECTS OF METHANOL AND FUMED SILICA ON LINEAR BURNING RATES OF AQUEOUS HYDROXYLAMMONIUM NITRATE

Volume 14, Edição 1, 2015, pp. 1-12
DOI: 10.1615/IntJEnergeticMaterialsChemProp.2014011180
Get accessGet access

RESUMO

The linear burning rates of aqueous hydroxylammonium nitrate (HAN) solutions containing methanol and nanoscale fumed silica were observed in a strand burner at pressures between 3 and 22 MPa. Measurements were completed using a previously verified pressure-based method that does not require direct observation of the propellant burning surface. The baseline solution contained 82.4% HAN by weight, while methanol and fumed silica powder were separately added to this baseline mixture at an additional 14.9% and 1% by weight, respectively. Baseline burning rates and light emission phenomena compared favorably with similar solutions studied by other research groups using more complex optical techniques. The addition of14.9% methanol resulted in burning rates that could be over 12.5 times faster than the baseline rates at lower chamber pressures, while the presence of 1% fumed silica nanoparticles yielded burning rates that were over 7.3 times faster at lower pressures. All tested mixtures exhibited drastic changes in burning behavior between certain pressure regimes, and the presence of methanol caused a much greater deviation from the overall shape of the baseline burning rate curve. The current study expands the range of chamber pressures tested for aqueous HAN and HAN/methanol solutions while exploring the use of metal oxide additives to tailor combustion behavior without radically altering the burning curve shape, with the future goal of creating and testing novel nanofluids based on HAN and methanol.

CITADO POR
  1. Chai Wai Siong, Sun Dashan, Cheah Kean How, Li Gang, Meng Hua, Co-Electrolysis-Assisted Decomposition of Hydroxylammonium Nitrate–Fuel Mixtures Using Stainless Steel–Platinum Electrodes, ACS Omega, 5, 31, 2020. Crossref

Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa Políticas de preços e assinaturas Begell House Contato Language English 中文 Русский Português German French Spain