Inscrição na biblioteca: Guest
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa
International Journal of Energetic Materials and Chemical Propulsion
ESCI SJR: 0.28 SNIP: 0.421 CiteScore™: 0.9

ISSN Imprimir: 2150-766X
ISSN On-line: 2150-7678

International Journal of Energetic Materials and Chemical Propulsion

DOI: 10.1615/IntJEnergeticMaterialsChemProp.v9.i3.20
pages 205-218

HIGH-TEMPERATURE BEHAVIOR OF GRAPHITE UNDER LASER IRRADIATION

Jonathan T. Essel
Department of Mechanical and Nuclear Engineering, Pennsylvania State University, University Park, PA 16802
Ragini Acharya
Pennsylvania State University, University Park, Pennsylvania 16802, USA
Justin Sabourin
Aerojet Rocketdyne
Baoqi Zhang
Department of Mechanical and Nuclear Engineering The Pennsylvania State University, University Park, PA 16802 USA
Kenneth K. Kuo
Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802, USA
Richard A. Yetter
The Pennsylvania State University, University Park, Pennsylvania 16802, USA

RESUMO

Understanding the high-temperature ablative behavior of rocket nozzle materials is crucial for future space propulsion applications. In this investigation, the high-temperature ablative behavior of G-90 grade graphite was studied under CO2 laser irradiation in a helium gas environment with and without hydrogen addition. The objective of this study was to determine if the high-density graphite experiences considerable mass loss at temperatures significantly below its boiling point of 3,915 K. Additionally, understanding the mechanisms that cause the ablation is desired. Mass loss was observed at surface temperatures in excess of 2,100 K for both conditions. The mass loss was minor until the surface temperature reached a value of approximately 2,650-2,700 K. Beyond this point, increased laser energy flux causes an exponential increase of mass loss rate while the surface temperature remained constant. When hydrogen was introduced to the heated sample, acetylene, methane, and ethane were detected by a flame ionization detector. The high measured concentration of acetylene at elevated mass loss rates suggests that the hydrogen is reacting primarily with the pyrolyzed carbonaceous material generated from the sample surface rather than through heterogeneous reactions. The finding of significant mass loss by ablation suggests a new mechanism for nozzle erosion in addition to thermochemical and mechanical erosion.


Articles with similar content:

SURFACE HEAT RELEASE OF HTPB-BASED FUELS IN OXYGEN RICH ENVIRONMENTS
International Journal of Energetic Materials and Chemical Propulsion, Vol.5, 2002, issue 1-6
H. Stephen Jones, Grant A. Risha, George C. Harting, Joseph P. Arves, Arie Peretz, Donald E. Koch
FLAME SPREADING AND VIOLENT ENERGY RELEASE PROCESS OF ALUMINUM TUBING IN LIQUID AND GASEOUS OXYGEN ENVIRONMENTS
International Journal of Energetic Materials and Chemical Propulsion, Vol.5, 2002, issue 1-6
J. G. Hansel, P. A. Houghton, M. M. Mench
Ignition and Combustion Behavior of MTV Igniter Materials for Base Bleed Applications
International Journal of Energetic Materials and Chemical Propulsion, Vol.1, 1991, issue 1-6
T. S. Snyder, B. L. Fetherolf, Dah-Ming Chen, T. A. Litzinger
ACOUSTIC EMISSION MEASUREMENTS FOR CHARACTERIZING HYDROCARBON/OXYGEN DIFFUSION FLAME BEHAVIOR
International Journal of Energetic Materials and Chemical Propulsion, Vol.6, 2007, issue 6
Jeffrey D. Moore, Grant A. Risha, Baoqi Zhang, Kenneth K. Kuo
COMBUSTION AND FLAME SPREADING OF ALUMINUM TUBING IN HIGH PRESSURE OXYGEN
International Journal of Energetic Materials and Chemical Propulsion, Vol.5, 2002, issue 1-6
J. P. Haas, M. M. Mench