Inscrição na biblioteca: Guest
International Journal of Energetic Materials and Chemical Propulsion

Publicou 6 edições por ano

ISSN Imprimir: 2150-766X

ISSN On-line: 2150-7678

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 0.7 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 0.7 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.1 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00016 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.18 SJR: 0.313 SNIP: 0.6 CiteScore™:: 1.6 H-Index: 16

Indexed in

EFFECT OF FLASH-TUBE VENT-HOLE PATTERNS ON THE COMBUSTION PRODUCT DISCHARGE RATE

Volume 8, Edição 3, 2009, pp. 199-220
DOI: 10.1615/IntJEnergeticMaterialsChemProp.v8.i3.30
Get accessGet access

RESUMO

Understanding the ignition/combustion processes of pyrotechnic pellets and the product-gas pressurization and venting behavior from the flash tube of an ignition cartridge is very useful for supporting model formulation and design improvements of mortar propulsion systems. Results of the existing flash tube design show a highly transient and spatially non-uniform pressurization process produced by the combustion of pyrotechnic pellets. The non-uniform discharge of combustion products to the granular propellant bed can induce significant pressure wave phenomena in the projectile and mortar tube. This study examines the effect of flash-tube vent-hole size patterns in an effort to achieve a more uniform discharge of products. Results show that one can achieve a more uniform discharge mass flow rate into the granular bed by using non-uniform vent-hole sizes along the flash tube. This implies that an improved design of the flash tube could have the potential for significantly reduced pressure waves in the ignition cartridge of the 120-mm mortar system.

Referências
  1. Moore, J.D., Ferrara, P.J., and Kuo, K.K., Characterization of Combustion Processes in a Windowed Flash Tube of M1020 Ignition Cartridge for 120-mm Mortar System.

CITADO POR
  1. Lu Xinggan, Jiang Kun, Wang Hao, Numerical simulation research on coupling of gas generator with large aspect ratio and multi-vent, AIP Advances, 11, 7, 2021. Crossref

Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa Políticas de preços e assinaturas Begell House Contato Language English 中文 Русский Português German French Spain