Inscrição na biblioteca: Guest
International Journal of Energetic Materials and Chemical Propulsion

Publicou 6 edições por ano

ISSN Imprimir: 2150-766X

ISSN On-line: 2150-7678

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 0.7 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 0.7 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.1 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00016 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.18 SJR: 0.313 SNIP: 0.6 CiteScore™:: 1.6 H-Index: 16

Indexed in

THERMAL PROTECTION WALL-EFFECT ON THE COMBUSTION OF A SOLID PROPELLANT AT SUBATMOSPHERIC PRESSURE

Volume 5, Edição 1-6, 2002, pp. 1018-1027
DOI: 10.1615/IntJEnergeticMaterialsChemProp.v5.i1-6.1040
Get accessGet access

RESUMO

The solid rocket motors for high altitude applications operate under external vacuum conditions and for that reason, during their life, the inner motor pressure can reach values, which are lower than the measured Pressure Deflagration Limit (PDL) in laboratory tests. Although this condition should not allow any combustion process inside the motor, a small residual thrust is still active due to unexpected gases production. The motor's operating time becomes longer than the estimated one, and therefore this occurrence cannot be neglected in the motor design. The thermal insulator degradation, coupled to the propellant combustion or high temperature decomposition at pressures below the PDL, can be the main causes of this unpredicted motor performance. For those reasons, an experimental study to analyze the wall-effect due to the thermal protection presence, in contact with the burning propellant, has been carried out in order to find out which parameters are more sensible to this operating configuration. Results have demonstrated that the average propellant temperature increases when the burning surface approaches the thermal insulator because of the large value of the thermal wave thickness, especially when metallized propellents are used. Moreover, the radiant energy scattered by the inner part of the nozzle, or by the exposed thermal protection, is another possible cause that yields the propellant to bum, or gasify, below PDL. To verify this possibility, the degradation behavior of the thermal protections has been analyzed and results indicate that the energy amount emitted by these hot materials is enough to sustain the propellant combustion process below PDL.

Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa Políticas de preços e assinaturas Begell House Contato Language English 中文 Русский Português German French Spain