Inscrição na biblioteca: Guest
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa
Journal of Automation and Information Sciences
SJR: 0.232 SNIP: 0.464 CiteScore™: 0.27

ISSN Imprimir: 1064-2315
ISSN On-line: 2163-9337

Volumes:
Volume 51, 2019 Volume 50, 2018 Volume 49, 2017 Volume 48, 2016 Volume 47, 2015 Volume 46, 2014 Volume 45, 2013 Volume 44, 2012 Volume 43, 2011 Volume 42, 2010 Volume 41, 2009 Volume 40, 2008 Volume 39, 2007 Volume 38, 2006 Volume 37, 2005 Volume 36, 2004 Volume 35, 2003 Volume 34, 2002 Volume 33, 2001 Volume 32, 2000 Volume 31, 1999 Volume 30, 1998 Volume 29, 1997 Volume 28, 1996

Journal of Automation and Information Sciences

DOI: 10.1615/JAutomatInfScien.v51.i6.20
pages 12-24

Convergence of Extragradient Algorithm with Monotone Step Size Strategy for Variational Inequalities and Operator Equations

Sergey V. Denisov
Kiev National Taras Shevchenko University, Ukraine
Dmitriy A. Nomirovskii
Kiev National Taras Shevchenko University, Kiev
Bogdan V. Rublyov
Kiev National Taras Shevchenko University, Kiev
Vladimir V. Semenov
Kiev National Taras Shevchenko University, Kiev

RESUMO

Variational inequalities and operator equations in an infinite dimensional Hilbert space with additional conditions in the terms of inclusion in the set of fixed points of a given operator are considered. For approximate solution of the problems, a new iterative algorithm that is a superposition of a modified Korpelevich extragradient algorithm with monotone step size strategy, which does not require knowledge of the Lipschitz operator constant, and the Krasnoselsky–Mann scheme for the approximation of fixed points, is proposed. In contrast to the previously used rules for choosing the step size, the proposed algorithm does not perform additional calculations for the operator values and the projections mapping. The algorithm was investigated using the theory of iterative processes of the Fejer type. The weak convergence of the algorithm for problems with pseudomonotone, Lipschitz continuous and sequentially weakly continuous operators and quasi nonexpansive operators, which specify additional conditions, is proved. Previously, similar results on weak convergence were known only for variational inequalities with monotone, Lipschitz continuous operators and with nonexpansive operators, which specify additional conditions.

Referências

  1. Kinderlehrer D., Stampacchia G., An introduction to variational inequalities and their applications, Academic Press, New York, 1980, [Russian transl., Mir, Moscow, 1983. .

  2. Baiocchi C., Capello A., Variational and quasi-variational inequalities. Applications to free boundary problems, Wiley, New York, 1984, Russian transl., Nauka, Moscow 1988. .

  3. Nagurney A., Network economics: A variational inequality approach, Kluwer Academic Publishers, Dordrecht, 1999, DOI: https://doi.org/10.1007/978-l-4757-3005-0. .

  4. Konnov I.V., Combined relaxation methods for variational inequalities, Springer-Verlag, Berlin-Heidelberg-New York, 2001, DOI: https://doi.org/10.1007/978-3-642-56886-2. .

  5. Sandrakov G.V., Homogenization of variational inequalities for problems with regular obstacles, Doklady Akademii Nauk, 2004, 397, No. 2, 170-173. .

  6. Sandrakov G.V., Homogenization of variational inequalities for nonlinear diffusion problems in perforated domains, Izvestiya Mathematics, 2005, 69, No. 5, 1035-1059, DOI: http://dx.doi.org/10, 1070/IM2005v069n05ABEH002287. .

  7. Gidel G., Berard H., Vincent P., Lacoste-Julien S., A variational inequality perspective on generative adversarial networks, arXiv preprint arXiv: 1802.10551, 2018. .

  8. Korpelevich G.M., The extragradient method for finding saddle points and other problems, Ekonomika i Matematicheskie Melody, 1976, 12. No. 4, 747-756. .

  9. Khobotov E.N., Modification of the extra-gradient method for solving variational inequalities and certain optimization problems, USSR Computational Mathematics and Mathematical Physics, 1987, 27, No. 5, 120-127, DOI: https://doi.org/10.1016/0041-5553(87)90058-9. .

  10. Semenov V.V., Strongly convergent algorithms for variational inequality problem over the set of solutions the equilibrium problems, In: Zgurovsky M.Z., Sadovnichiy V.A. (eds.) Continuous and Distributed Systems. Solid Mechanics and Its Applications, Springer International Publishing Switzerland, 2014, 211, 131-146, DOI: https://doi.org/10.1007/978-3-319-03146-0_10. .

  11. Tseng P., A modified forward-backward splitting method for maximal monotone mappings, SIAM Journal on Control and Optimization, 2000, 38, 431-446, DOI: https://doi.org/10.l137/ S0363012998338806. .

  12. Semenov V.V., A strongly convergent splitting method for systems of operator inclusions with monotone operators, Journal of Automation and Information Sciences, 2014, 46, No. 5, 45-56, DOI: https://doi.org/10.1615/JAutomatInfScien.v46.i5.40. .

  13. Semenov V.V., Hybrid splitting methods for the system of operator inclusions with monotone operators, Cybernetics and Systems Analysis, 2014, 50, No. 5, 741-749, DOI: https://doi.org/ 10.1007/s10559-014-9664-y. .

  14. Censor Y., GibaliA., Reich S., The subgradient extragradient method for solving variational inequalities in Hilbert space, Journal of Optimization Theory and Applications, 2011, 148, 318-335, DOI: https://doi.org/10.1007/sl0957-010-9757-3. .

  15. Lyashko S.I., Semenov V.V., VoitovaT.A., Low-cost modification of Korpelevich's methods for monotone equilibrium problems, Cybernetics and Systems Analysis, 2011, 47, No. 4, 631-639, DOI: https://doi.org/10.1007/sl0559-011-9343-1. .

  16. Denisov S.V., Semenov V.V., ChabakL.M., Convergence of the modified extragradient method for variational inequalities with Non-Lipschitz operators, Cybernetics and Systems Analysis, 2015, 51, No. 5, 757-765, DOI: https://doi.org/10.1007/sl0559-015-9768-z. .

  17. Verlan D.A., Semenov V.V., Chabak L.M., A strongly convergent modified extragradient method for variational inequalities with Non-Lipschitz operators, Journal of Automation and Information Sciences, 2015, 47, No. 7, 31-46, DOI: https://doi.org/10.1615/JAutomatlnfScien.v47.i7.40. .

  18. Nemirovski A., Prox-method with rate of convergence O(1/t) for variational inequalities with Lipschitz continuous monotone operators and smooth convex-concave saddle point problems, SIAM Journal on Optimization, 2004, 15, 229-251, DOI: https://doi.org/10.1137/S1052623403425629. .

  19. Semcnov V.V., Modified extragradient method with Bregman divergence for variational inequalities, Journal of Automation and Information Sciences, 2018, 50, No. 8, 26-37, DOI: https://doi.org/ 10.1615/JAutomatInfScien.v50.i8.30. .

  20. Semenov V.V., A version of the mirror descent method to solve variational inequalities, Cybernetics and Systems Analysis, 2017, 53, No. 2, 234-243, DOI: https://doi.org/10.I007/-sl0559-017-9923-9. .

  21. Chabak L., Semenov V., Vedel Y., A new non-Euclidean proximal method for equilibrium problems, In: ChertovO., Mylovanov T., Kondratenko Y., KacprzykJ., Kreinovich V., StefanukV. (eds.), Recent Developments in Data Science and Intelligent Analysis of Information, ICDSIAI 2018, Advances in Intelligent Systems and Computing, Springer, Cham, 2019, 836, 50-58, DOI: https://doi.org/10.1007/978-3-319-97885-7_6. .

  22. Lyashko S.I., Semenov V.V., A new two-step proximal algorithm of solving the problem of equilibrium programming, In: GoldengorinB. (ed.), Optimization and Its Applications in Control and Data Sciences, Springer Optimization and Its Applications, Springer. Cham, 2016, 115, 315-325, DOI: https://doi.org/10.I007/978-3-3l9-42056-l_10. .

  23. Semenov V.V., On the parallel proximal decomposition method for solving the problems of convex optimization, Journal of Automation and Information Sciences, 2010, 42, No. 4, 13-18, DOI: https://doi.org/10.1615/JAutomatInfScien.v42.i4.20. .

  24. Vasin V.V., Iterative methods for solving ill-posed problems with a priori information in Hilbert spaces, USSR Computational Mathematics and Mathematical Physics, 1988, 28, No. 4, 6-13, DOI: https://doi.org/10.1016/0041-5553(88)90104-8. .

  25. Vasin V.V., Iterative processes of the Fejer type in ill-posed problems with a prori information, Russian Math. (Iz. VUZ), 2009, 53, No. 2, 1-20. DOI: https://doi.org/10.3103/-S1066369X09020017. .

  26. Vasin V.V., Eremin I.I., Operators and iterative processes of Fejer type. Theory and Applications, Walter de Gruyter, Berlin-New York, 2009. .

  27. HalpernB., Fixed points of nonexpansive maps, Bull. Amer. Math. Soc., 1967, 73, No. 6, 957-961, DOI: https://doi.org/10.1090/S0002-9904-1967-11864-0. .

  28. Bauschke H.H., Combettes P.L., Convex analysis and monotone operator theory in Hilbert spaces, Springer, Berlin-Heidelberg-New York, 2011, DOI: https://doi.org/10.1007/978-3-319- 48311-5. .

  29. Nakajo K., Takahashi W., Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups, J. Math. Anal. Appl., 2003, 279, 372-379, DOI: https://doi.org/10.1016/ S0022-247X(02)00458-4. .


Articles with similar content:

A Strongly Convergent Modified Extragradient Method for Variational Inequalities with Non-Lipschitz Operators
Journal of Automation and Information Sciences, Vol.47, 2015, issue 7
Dmitriy A. Verlan , Lyubov M. Chabak , Vladimir V. Semenov
Numerical Methods of Modeling Control Systems Described by Stochastic Differential Equations
Journal of Automation and Information Sciences, Vol.31, 1999, issue 1-3
Oleg Yu. Kulchitskiy, Dmitriy F. Kuznetsov
Differential Games of Fractional Order with Impulse Effect
Journal of Automation and Information Sciences, Vol.47, 2015, issue 4
Ivan I. Matychyn, Victoriya V. Onyshchenko
Guaranteed Estimation of Parameters of Linear Algebraic Equations for Nonstationary Observations
Journal of Automation and Information Sciences, Vol.46, 2014, issue 1
Alexander G. Nakonechnyi, Sergey V. Demydenko
THREE GREEN ELEMENT FORMULATIONS FOR BURGERS' EQUATION
Hybrid Methods in Engineering, Vol.2, 2000, issue 2
Akpofure E. Taigbenu