Inscrição na biblioteca: Guest
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa
Journal of Automation and Information Sciences
SJR: 0.232 SNIP: 0.464 CiteScore™: 0.27

ISSN Imprimir: 1064-2315
ISSN On-line: 2163-9337

Volumes:
Volume 51, 2019 Volume 50, 2018 Volume 49, 2017 Volume 48, 2016 Volume 47, 2015 Volume 46, 2014 Volume 45, 2013 Volume 44, 2012 Volume 43, 2011 Volume 42, 2010 Volume 41, 2009 Volume 40, 2008 Volume 39, 2007 Volume 38, 2006 Volume 37, 2005 Volume 36, 2004 Volume 35, 2003 Volume 34, 2002 Volume 33, 2001 Volume 32, 2000 Volume 31, 1999 Volume 30, 1998 Volume 29, 1997 Volume 28, 1996

Journal of Automation and Information Sciences

DOI: 10.1615/JAutomatInfScien.v50.i10.20
pages 18-33

Simulation of Adsorption and Desorption of Hydrocarbons in Nanoporous Catalysts of Neutralization Systems of Exhaust Gases Using Nonlinear Langmuir Isotherm

Mikhail R. Petryk
Ivan Puluj Ternopol National Technical University, Ternopol
Alexander N. Khimich
V.M. Glushkov Institute of Cybernetics of National Academy of Sciences of Ukraine, Kiev
Mariya M. Petryk
Ivan Puluj Ternopol National Technical University, Ternopol

RESUMO

The theoretical bases of mathematical modeling of nonisothermal adsorption and desorption in nanoporous catalysts of exhaust gas neutralization systems for the Langmuir's nonlinear isotherm are given. They most fully determine the mechanism of adsorption equilibrium for micro and nanoporous systems of the ZSM-5 zeolite class. The effective scheme of linearization of a nonlinear model is implemented. High­speed analytical solutions of the system of linearized boundary problems of adsorption and desorption in nanoporous media are justified and obtained using the Heviside's operational method.

Referências

  1. Euro 5 and Euro 6 standards: reduction of pollutant emissions from light vehicles. Available at: europa.eu/legislation_summaries/environment/air_pollution/l28186_es.htm (May 5, 2010).

  2. Puertolas B., Navarro M.V., Lopez J.M., Murillo R., Mastral A.M., Garcia T., Modelling the heat and mass transfers of propane onto a ZSM-5 zeolite, Separation and Purification Technology, 2012, 86, 127–136.

  3. Petryk M.R., Khimich A.N., Petryk М.М., Fraissard J., Modeling of heat and mass transfer, adsorption and desorption of hydrocarbons in nanoporous zeolite-catalysts of neutralizing systems of exhaust gases, Mezhdunarodnyi nauchno-tekhnicheskiy zhurnal “Problemy upravleniya i informatiki”, 2018, No. 2, 49–57.

  4. Lyashko S.I., Semenov V.V., On the controllability of linear distributed systems in classes of generalized impacts, Kibernetika i sistemnyi analiz, 2001, No. 1, 18–42.

  5. Lyashko S.I., Nomirovsky D.A., Sergienko T.I., Trajectory and final controllability in hyperbolic and pseudohyperbolic systems with generalized impact, Ibid., 2001, No. 5, 157–166.

  6. Lyashko S.I., Klyushin D.A, Nomirovsky D.A., Semenov V.V., Identification of age — structured contamination sources in ground water, Optimal control of age — structured populations in economy, demography, and the environment (ed. by R. Boucekkline et all.), Routledge, London, New York, 2013, 277–292.

  7. Kärger J., Ruthven D., Diffusion in zeolites and other microporous solids, John Wiley & Sons, New York, 1992.

  8. Kärger J., Ruthven D., Theodorou D., Diffusion in nanoporous materials, John Wiley & Sons, Hoboken, 2012.

  9. Chen N.Y., Degnan T.F., Smith M.C., Molecular transport and reaction in zeolites: design and application of shape selective catalysis, Wiley-VCH. New York, 1994.

  10. Prudnikov A.P., Brichkov Yu.A., Marychev O.I., Integrals and series. Additional chapters [in Russian], Nauka, Moscow, 1986.

  11. Sergienko I.V., Petryk M.R., Khimich A.N., Mykhalyk D.M., Leclerc S., Fraissard J., Mathematical modelling of diffusion process in microporous media (Numerical analysis and application) [in Russian], National Academy of Sciences of Ukraine, Kyiv, 2014.

  12. Heaviside O., Electromagnetic theory, The Electrician, London, 1893, 1-3, E.C.

  13. Lavrentiev M.A., Shabat B.V., Methods of theory of functions of a complex variable [in Russian], Nauka, Moscow, 1973.

  14. Petryk M., Leclerc S., Canet D., Sergienko I.V., Deineka V.S., Fraissard J., The competitive diffusion of gases in a zeolite bed: NMR and slice procedure, modelling ANMD identification of parameters, The Journal of Physical Chemistry C. ACS (USA), 2015, 119 (47), 26519–26525.


Articles with similar content:

Mathematical Modeling of Nonlinear Competitive Two-Component Diffusion in Media of Nanoporous Particles
Journal of Automation and Information Sciences, Vol.41, 2009, issue 3
Mikhail R. Petryk, Jack Fraissard
Realization of the Game Approach to Control of Second Order Linear Objects
Journal of Automation and Information Sciences, Vol.41, 2009, issue 10
Igor F. Eryemenko, Alexander G. Gurko
Sumulation of Unilateral Physical Processes of Diffusion and Heat-Mass Exchange
Journal of Automation and Information Sciences, Vol.29, 1997, issue 6
A. M. Novikov , Mikhail Z. Zgurowsky
Electrostatic Potential Distribution in Inverted Cylindrical Magnetrons
Telecommunications and Radio Engineering, Vol.55, 2001, issue 10-11
O. M. Nikitenko
The Construction of Equations for Boundaries of Fractal Domains with the Use of the R-Function Method
Telecommunications and Radio Engineering, Vol.56, 2001, issue 12
Miklhail Alekseevich Basarab, Victor Filippovich Kravchenko