Inscrição na biblioteca: Guest
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa
Critical Reviews™ in Immunology
Fator do impacto: 1.404 FI de cinco anos: 3.347 SJR: 0.706 SNIP: 0.55 CiteScore™: 2.19

ISSN Imprimir: 1040-8401
ISSN On-line: 2162-6472

Volume 40, 2020 Volume 39, 2019 Volume 38, 2018 Volume 37, 2017 Volume 36, 2016 Volume 35, 2015 Volume 34, 2014 Volume 33, 2013 Volume 32, 2012 Volume 31, 2011 Volume 30, 2010 Volume 29, 2009 Volume 28, 2008 Volume 27, 2007 Volume 26, 2006 Volume 25, 2005 Volume 24, 2004 Volume 23, 2003 Volume 22, 2002 Volume 21, 2001 Volume 20, 2000 Volume 19, 1999 Volume 18, 1998 Volume 17, 1997 Volume 16, 1996 Volume 15, 1995 Volume 14, 1994

Critical Reviews™ in Immunology

DOI: 10.1615/CritRevImmunol.v30.i2.50
pages 167-187

Mode of Action of Botulinum Neurotoxins: Current Vaccination Strategies and Molecular Immune Recognition

K. Roger Aoki
Ailergan, Inc., 2525 DuPont Drive, Irvine, CA 92612, USA
Leonard A. Smith
Integrated Toxicology Division, US Army Medical Research Institute of Infectious Diseases; Fort Detrick, MD 21702-5011, USA
M. Zouhair Atassi
Baylor College of Medicine Houston, TX 77030


The action of a botulinum neurotoxin (BoNT) commences by binding at the nerve terminal via its H- (heavy) chain to a cell-surface receptor, which consists of a ganglioside and a cell-surface protein. Binding enables the L-chain, a Zn2+-dependent endopeptidase, to be internalized and act intracellularly, cleaving one or more SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins required for vesicle docking and fusion, which results in reduced neurotransmitter release. Sprouts emerge at motor-nerve terminals that reestablish synaptic contact and lead to restoration of exocytosis. As the terminals recover, sprouts retreat and synaptic function is fully re-established. Neutralizing antibodies (Abs) induced by vaccination can prevent the neuronal changes produced by BoNT. Until recently, vaccines against BoNT have been based on toxins inactivated by treatment with formaldehyde (toxoids) and contain either one (monovalent) or five (pentavalent) toxoids, but formalin-based toxoids have many undesirable side effects. Availability of the gene sequences of BoNT serotypes enabled design of recombinant subunit vaccines that have included the C-terminal domain of the H chain (HC, its subdomains (HC-N and HC-C), the L- (catalytic) chain, and the L-chain expressed with the translocation domain (LCHN). Of these, the HC displays the highest protective ability. Recent vaccines have used whole toxins inactivated by three key mutations at the enzyme active site, which have been found to be very effective in mice against the correlated toxin. Immune responses to BoNTs A and B epitopes are under the host’s MHC (major histocompatibility complex) control. Anti-BoNT/A blocking Abs bind at sites that coincide or overlap with those that bind synaptosomes and to BoNT/B at sites that overlap with synaptotagmin-II and ganglioside-binding sites. Therefore, locations occupied by blocking Abs preclude the respective toxin from binding to its receptor and thus from binding to cell surface. Information on BoNT epitopes for blocking Abs, sites for binding to cell surface receptors, and T-cell epitopes that provide help to B cells making blocking Abs afford a prospect for rational design of stable synthetic vaccines. These constructs should be clinically useful for epitope-selective modulation of Ab responses to restore effective BoNT treatment in immunoresistant patients.

Articles with similar content:

Structure, Activity, and Immune (T and B Cell) Recognition of Botulinum Neurotoxins
Critical Reviews™ in Immunology, Vol.19, 1999, issue 3
Minako Oshima, M. Zouhair Atassi
Lymphocyte Activation in Health and Disease
Critical Reviews™ in Immunology, Vol.17, 1997, issue 2
Michael J. Berridge
Lymphocyte Activation in Health and Disease
Critical Reviews™ in Immunology, Vol.37, 2017, issue 2-6
Michael J. Berridge
Vitamin B12-Mediated Transport: A Potential Tool for Tumor Targeting of Antineoplastic Drugs and Imaging Agents
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.25, 2008, issue 4
Yashwant Gupta, Dharm Veer Kohli, Sanjay Kumar Jain
Mechanisms of IgE Elevation in HIV-1 Infection
Critical Reviews™ in Immunology, Vol.20, 2000, issue 6
Amato de Paulis, Angelica Petraroli, Giovanni Florio, Gianni Marone, Massimo Triggiani