Inscrição na biblioteca: Guest
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa
Critical Reviews™ in Therapeutic Drug Carrier Systems
Fator do impacto: 2.9 FI de cinco anos: 3.72 SJR: 0.736 SNIP: 0.818 CiteScore™: 4.6

ISSN Imprimir: 0743-4863
ISSN On-line: 2162-660X

Volumes:
Volume 37, 2020 Volume 36, 2019 Volume 35, 2018 Volume 34, 2017 Volume 33, 2016 Volume 32, 2015 Volume 31, 2014 Volume 30, 2013 Volume 29, 2012 Volume 28, 2011 Volume 27, 2010 Volume 26, 2009 Volume 25, 2008 Volume 24, 2007 Volume 23, 2006 Volume 22, 2005 Volume 21, 2004 Volume 20, 2003 Volume 19, 2002 Volume 18, 2001 Volume 17, 2000 Volume 16, 1999 Volume 15, 1998 Volume 14, 1997 Volume 13, 1996 Volume 12, 1995

Critical Reviews™ in Therapeutic Drug Carrier Systems

DOI: 10.1615/CritRevTherDrugCarrierSyst.v28.i1.10
pages 1-45

Engineered PLGA Nanoparticles: An Emerging Delivery Tool in Cancer Therapeutics

Amit K. Jain
Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar (Mohali), Punjab, India
Manasmita Das
Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar (Mohali), Punjab, India
Nitin K. Swarnakar
Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar (Mohali), Punjab, India
Sanyog Jain
Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar (Mohali), Punjab, India

RESUMO

Nanocarriers formulated with the US Food and Drug Administration-approved biocompatible and biodegradable polymer poly(lactic-co-glycolic acid) (PLGA) are being widely explored for the controlled delivery of therapeutic drugs, proteins, peptides, oligonucleotides, and genes. Surface functionalization of PLGA nanoparticles has paved the way to a variety of engineered PLGA-based nanocarriers, which, depending on reticular requirements, can demonstrate a wide variety of combined properties and functions such as prolonged residence time in blood circulation, enhanced oral bioavailability, site-specific drug delivery, and tailored release characteristics. The present review highlights the recent leaps in PLGA-based nanotechnology with a particular focus on cancer therapeutics. Starting with a brief introduction to cancer nanotechnology, we then discuss developmental aspects and the in vitro and in vivo efficacy of PLGA-based nanocarriers in terms of targeted drug or gene delivery. The main objective of this review is to convey information about the state of art and to critically address the limitations and the need for further progress and clinical developments in this emerging technology.


Articles with similar content:

Tiny Technology Proves Big: A Challenge at Engineering, Medicine and Pharmaceutical Sciences Interface
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.31, 2014, issue 1
Aswini K. Mohapatra, Anjan K. Mahapatra, P. N. Murthy, Supriya Samoju
Hyaluronate Derivatives in Drug Delivery
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.15, 1998, issue 5
Glenn D. Prestwich, Koen P. Vercruysse
Functional Polymeric Nanoparticles: An Efficient and Promising Tool for Active Delivery of Bioactives
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.23, 2006, issue 4
Senthilkumar Murugesan, Tathagata Dutta, Abhay Asthana, Manoj Tare, Surbhi Saraf, Narendra Kumar Jain, Vijayaraj Rajkumar, Manoj Nahar, Dinesh Mishra
The Role of Surface Functionalization in the Design of PLGA Micro- and Nanoparticles
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.27, 2010, issue 1
Michael Wirth, Vera Kerleta, Christian Fillafer, Franz Gabor, Gerda Ratzinger
Nanostructured Materials in Drug and Gene Delivery: A Review of the State of the Art
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.28, 2011, issue 2
Krutika Sawant, Kailash C. Petkar, Sandip S. Chavhan, Snezana Agatonovik-Kustrin