Inscrição na biblioteca: Guest
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa
Critical Reviews™ in Therapeutic Drug Carrier Systems
Fator do impacto: 2.9 FI de cinco anos: 3.72 SJR: 0.736 SNIP: 0.818 CiteScore™: 4.6

ISSN Imprimir: 0743-4863
ISSN On-line: 2162-660X

Volumes:
Volume 37, 2020 Volume 36, 2019 Volume 35, 2018 Volume 34, 2017 Volume 33, 2016 Volume 32, 2015 Volume 31, 2014 Volume 30, 2013 Volume 29, 2012 Volume 28, 2011 Volume 27, 2010 Volume 26, 2009 Volume 25, 2008 Volume 24, 2007 Volume 23, 2006 Volume 22, 2005 Volume 21, 2004 Volume 20, 2003 Volume 19, 2002 Volume 18, 2001 Volume 17, 2000 Volume 16, 1999 Volume 15, 1998 Volume 14, 1997 Volume 13, 1996 Volume 12, 1995

Critical Reviews™ in Therapeutic Drug Carrier Systems

DOI: 10.1615/CritRevTherDrugCarrierSyst.2013007706
pages 535-563

Nano-Aggregates: Emerging Delivery Tools for Tumor Therapy

Vinod Kumar Sharma
Department of Pharmaceutical Sciences, Dr. Hari Singh Gour Central University, Sagar (M.P.), India
Ankit Jain
Institute of Pharmaceutical Research, GLA University, 17km Stone, NH-2, Mathura-Delhi Road P.O. Chaumuhan, Mathura, Uttar Pradesh 281406, India
Vandana Soni
Department of Pharmaceutical Sciences, Dr. Hari Singh Gour Central University, Sagar (M.P.), India

RESUMO

A plethora of formulation techniques have been reported in the literature for site-specific targeting of water-soluble and -insoluble anticancer drugs. Along with other vesicular and particulate carrier systems, nano-aggregates have recently emerged as a novel supramolecular colloidal carrier with promise for using poorly water-soluble drugs in molecular targeted therapies. Nano-aggregates possess some inherent properties such as size in the nanometers, high loading efficiency, and in vivo stability. Nano-aggregates can provide site-specific drug delivery via either a passive or active targeting mechanism. Nano-aggregates are formed from a polymer-drug conjugated amphiphilic block copolymer. They are suitable for encapsulation of poorly water-soluble drugs by covalent conjugation as well as physical encapsulation. Because of physical encapsulation, a maximum amount of drug can be loaded in nano-aggregates, which helps to achieve a sufficiently high drug concentration at the target site. Active transport can be achieved by conjugating a drug with vectors or ligands that bind specifically to receptors being overexpressed in the tumor cells. In this review, we explore synthesis and tumor targeting potential of nano-aggregates with active and passive mechanisms, and we discuss various characterization parameters, ex vivo studies, biodistribution studies, clinical trials, and patents.


Articles with similar content:

Submicron Emulsions and Their Applications in Oral Delivery
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.33, 2016, issue 3
Veenu Mundada, Krutika Sawant, Mitali Patel
Carbohydrate Molecules: An Expanding Horizon in Drug Delivery and Biomedicine
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.28, 2011, issue 3
Akanksha Tiwari, Raj Kumar Shukla
Mannosylated Constructs as a Platform for Cell-Specific Delivery of Bioactive Agents
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.35, 2018, issue 2
Sanjay Tiwari
Polymeric Micelles for Delivery of Poorly Water-Soluble Compounds
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.20, 2003, issue 5
Glen S. Kwon
Functional Polymeric Nanoparticles: An Efficient and Promising Tool for Active Delivery of Bioactives
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.23, 2006, issue 4
Senthilkumar Murugesan, Tathagata Dutta, Abhay Asthana, Manoj Tare, Surbhi Saraf, Narendra Kumar Jain, Vijayaraj Rajkumar, Manoj Nahar, Dinesh Mishra