Inscrição na biblioteca: Guest
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa
Critical Reviews™ in Oncogenesis
SJR: 0.631 SNIP: 0.503 CiteScore™: 2.2

ISSN Imprimir: 0893-9675
ISSN On-line: 2162-6448

Critical Reviews™ in Oncogenesis

DOI: 10.1615/CritRevOncog.2013007921
pages 409-434

Iron Chelation: Inhibition of Key Signaling Pathways in the Induction of the Epithelial Mesenchymal Transition in Pancreatic Cancer and Other Tumors

Alexander Richardson
Iron Metabolism and Chelation Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales, 2006, Australia
Zaklina Kovacevic
Iron Metabolism and Chelation Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales, 2006, Australia
Des R. Richardson
Iron Metabolism and Chelation Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales, 2006, Australia

RESUMO

Pancreatic cancer is the fourth leading cause of cancer-related deaths worldwide in both men and women. It presents late with non-specific symptoms, which makes it difficult to diagnose until the cancer has progressed and metastasized. Metastasis is facilitated by the epithelial-to-mes-enchymal transition (EMT), which is promoted via the oncogenic transforming growth factor beta (TGFβ), Wnt, and nuclear factor kappa B (NFκB) signaling pathways. However, recent studies have demonstrated that the EMT can be inhibited by novel anti-cancer agents known as thiosemicarbazone iron chelators. These novel agents also up-regulate the metastasis suppressor, N-myc downstream regulated gene 1 (NDRG1), which can restore normal signaling to the cell and suppresses metastasis via inhibition of the EMT. Through the ability of iron chelators to up-regulate NDRG1 expression and affect multiple molecular targets, these agents have the potential to maintain the epithelial phenotype of cancer cells and may lead to improved survival rates for patients with late-stage disease.


Articles with similar content:

The Novel Role of Yin Yang 1 in the Regulation of Epithelial to Mesenchymal Transition in Cancer Via the Dysregulated NF-κB/Snail/YY1/RKIP/PTEN Circuitry
Critical Reviews™ in Oncogenesis, Vol.16, 2011, issue 3-4
Stavroula Baritaki, Benjamin Bonavida
Inhibition of Snail-induced Epithelial-Mesenchymal Transition and Induction of the Tumor Metastasis Suppressor Gene Raf-1 Kinase Inhibitor Protein (RKIP) by DETANONOate
Forum on Immunopathological Diseases and Therapeutics, Vol.1, 2010, issue 3
Stavroula Baritaki, Benjamin Bonavida
Kruppel-Like Factor 4: From Physiological Functions to Tumor Therapy
Forum on Immunopathological Diseases and Therapeutics, Vol.7, 2016, issue 1-2
Peng Li, Ruocong Zhao, Yunxin Lai
Dual Roles of Raf-1 Kinase Inhibitor Protein in the Regulation of Both Tumor Cell Resistance to Apoptotic Stimuli and Epithelial to Mesenchymal Transition
Forum on Immunopathological Diseases and Therapeutics, Vol.2, 2011, issue 1
Stavroula Baritaki, Kam C. Yeung, Benjamin Bonavida
The Activated NF-κB-Snail-RKIP Circuitry in Cancer Regulates Both the Metastatic Cascade and Resistance to Apoptosis by Cytotoxic Drugs
Critical Reviews™ in Immunology, Vol.29, 2009, issue 3
Katherine Wu, Benjamin Bonavida