Inscrição na biblioteca: Guest
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa
Critical Reviews™ in Oncogenesis
SJR: 0.631 SNIP: 0.503 CiteScore™: 2

ISSN Imprimir: 0893-9675
ISSN On-line: 2162-6448

Critical Reviews™ in Oncogenesis

DOI: 10.1615/CritRevOncog.2019031265
pages 251-258

Possible Protective Effects of Thiazolidinediones Antidiabetic Drugs in Colorectal Cancer

Saman Bahrambeigi
Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
Reza Badalzadeh
Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Physiology, Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
Vahid Shafiei-Irannejad
Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
Arash Alizadeh
Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, P.O. Box: 1177, Urmia University, Urmia, Iran


Colorectal cancer (CRC) is one of the most common cancers worldwide, and it is considered the fourth most common cause of life-threatening cancers. Diabetes mellitus, especially type 2 diabetes, is an independent risk factor for CRC, due to shared risk factors like physical inactivity and obesity. Thiazolidinediones (TZDs) are among the most common medications for type 2 diabetes mellitus. Recent investigations have suggested a correlation between TZD usage (in a time-dependent manner) and reduced risk of CRC such that a longer period of TZDs treatment can lead to higher protection against CRC. TZDs have antitumor effects in a wide variety of in vitro and in vivo cancer models through different mechanisms such as the impacts on cell cycle, apoptosis, cell differentiation, and angiogenesis. These effects can be mediated via both peroxisome proliferator-activated receptors γ (PPARγ)-dependent and PPARγ-independent pathways. Due to the protective effects of TZDs in cancer prevention and treatment, they can be considered potent adjuvants in cancer treatment. In the current review, we discuss the effects of TZDs on prevention and treatment of cancers, with special emphasis on CRC and the association of TZD administration with metabolic regulation of T cells in defense against tumor cells.


  1. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):E359-E86.

  2. Brenner H, Kloor M. Pox cP. colorectal cancer. Lancet. 2014;383(9927):1490-502.

  3. Jiang Y, Ben Q, Shen H, Lu W, Zhang Y, Zhu J. Diabetes mellitus and incidence and mortality of colorectal cancer: a systematic review and meta-analysis of cohort studies. Eur J Epidemiol. 2011;26(11):863-76.

  4. Ma Y, Yang Y, Wang F, Zhang P, Shi C, Zou Y, Qin H. Obesity and risk of colorectal cancer: a systematic review of prospective studies. PLoS One. 2013;8(1):e53916.

  5. Chan DS, Lau R, Aune D, Vieira R, Greenwood DC, Kampman E, Norat T. Red and processed meat and colorectal cancer incidence: meta-analysis of prospective studies. PLoS One. 2011;6(6):e20456.

  6. Fedirko V, Tramacere I, Bagnardi V, Rota M, Scotti L, Islami F, Negri E, Straif K, Romieu I, La Vecchia C. Alcohol drinking and colorectal cancer risk: an overall and dose-response meta-analysis of published studies. Ann Oncol. 2011;22(9):1958-72.

  7. Liang PS, Chen TY, Giovannucci E. Cigarette smoking and colorectal cancer incidence and mortality: Systematic review and meta-analysis. Int J Cancer. 2009;124(10):2406-15.

  8. Jess T, Rungoe C, Peyrin-Biroulet L. Risk of colorectal cancer in patients with ulcerative colitis: a meta-analysis of population-based cohort studies. Clin Gastroenterol Hepatol. 2012;10(6):639-45.

  9. Taylor DP, Burt RW, Williams MS, Haug PJ, Cannon- Albright LA. Population-based family history-specific risks for colorectal cancer: a constellation approach. Gastroenterology. 2010;138(3):877-85.

  10. Singh S, Singh H, Singh PP, Murad MH, Limburg PJ. Antidiabetic medications and the risk of colorectal cancer in patients with diabetes mellitus: a systematic review and meta-analysis. Cancer Epidemiol Prev Biomarkers. 2013;22(12):2258-68.

  11. Agache A, Mustafa P, Mihalache O, Bobirca FT, Georgescu DE, Jauca CM, Birligea A, Doran H, Patra^cu T. Diabetes mellitus as a risk-factor for colorectal cancer literature review-current situation and future perspectives. Chirurgia (Bucharest, Romania: 1990). 2018;113(5):603-10.

  12. Huxley R, Ansary-Moghaddam A, De Gonzalez AB, Barzi F, Woodward M. Type-II diabetes and pancreatic cancer: a meta-analysis of 36 studies. Br J Cancer. 2005;92(11):2076-83.

  13. Xu X, Wu J, Mao Y, Zhu Y, Hu Z, Xu X, Lin Y, Chen H, Zheng X, Qin J. Diabetes mellitus and risk of bladder cancer: a meta-analysis of cohort studies. PLoS One. 2013;8(3):e58079.

  14. El-Serag HB, Hampel H, Javadi F. The association between diabetes and hepatocellular carcinoma: a systematic review of epidemiologic evidence. Clin Gastroenterol and Hepatol. 2006;4(3):369-80.

  15. Larsson S, Wolk A. Diabetes mellitus and incidence of kidney cancer: a meta-analysis of cohort studies.? Diabetologia. 2011;54(5):1013-18.

  16. Luo W, Cao Y, Liao C, Gao F. Diabetes mellitus and the incidence and mortality of colorectal cancer: a meta-analysis of 24 cohort studies. Colorectal Dis. 2012;14(11):1307-12.

  17. Shafiei-Irannejad V, Samadi N, Yousefi B, Salehi R, Velaei K, Zarghami N. Metformin enhances doxorubicin sensitivity via inhibition of doxorubicin efflux in P-gp- overexpressing MCF-7 cells. Chem Biol Drug Des. 2018;91(1):269-76.

  18. Shafiei-Irannejad V, Samadi N, Salehi R, Yousefi B, Rahimi M, Akbarzadeh A, Zarghami N. Reversion of multidrug resistance by co-encapsulation of doxorubicin and metformin in poly (lactide-co-glycolide)-d- a-tocopheryl polyethylene glycol 1000 succinate nanoparticles. Pharm Res. 2018;35(6):119.

  19. Shafiei-Irannejad V, Samadi N, Salehi R, Yousefi B, Zarghami N. New insights into antidiabetic drugs: possible applications in cancer treatment. Chem Biol Drug Des. 2017;90(6):1056-66.

  20. Colmers I, Bowker S, Johnson J. Thiazolidinedione use and cancer incidence in type 2 diabetes: a systematic review and meta-analysis. Diabetes Metab. 2012;38(6):475-84.

  21. Yousefi B, Samadi N, Baradaran B, Shafiei-Irannejad V, Zarghami N. Peroxisome proliferator-activated receptor ligands and their role in chronic myeloid leukemia: Therapeutic strategies. Chem Biol Drug Des. 2016;88(1):17-25.

  22. Motomura W, Okumura T, Takahashi N, Obara T, Kohgo Y. Activation of peroxisome proliferator-activated receptor y by troglitazone inhibits cell growth through the increase of p27Kip1 in human pancreatic carcinoma cells. Cancer Res. 2000;60(19):5558-64.

  23. Takahashi N, Okumura T, Motomura W, Fujimoto Y, Kawabata I, Kohgo Y. Activation of PPARy inhibits cell growth and induces apoptosis in human gastric cancer cells. Febs Lett. 1999;455(1-2):135-39.

  24. Osawa E, Nakajima A, Wada K, Ishimine S, Fujisawa N, Kawamori T, Matsuhashi N, Kadowaki T, Ochiai M, Sekihara H. Peroxisome proliferator-activated receptor y ligands suppress colon carcinogenesis induced by azoxymethane in mice. Gastroenterology. 2003;124(2):361-67.

  25. Hauner H. The mode of action of thiazolidinediones. Diabetes Metab Res Rev. 2002;18(S2):S10-S15.

  26. Haffner SM, Miettinen H. Insulin resistance implications for type II diabetes mellitus and coronary heart disease. Am J Med. 1997;103(2):152-62.

  27. Yasmin S, Jayaprakash V. Thiazolidinediones and PPAR orchestra as antidiabetic agents: From past to present. Eur J Med Chem. 2017;126:879-93.

  28. Sher T, Yi HF, McBride OW, Gonzalez FJ. cDNA cloning, chromosomal mapping, and functional characterization of the human peroxisome proliferator activated receptor. Biochemistry. 1993;32(21):5598-604.

  29. Issemann I, Green S. Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature. 1990;347(6294):645.

  30. Berger JP, Akiyama TE, Meinke PT. PPARs: therapeutic targets for metabolic disease. Trends Pharmacol Sci. 2005;26(5):244-51.

  31. Kahn CR, Chen L, Cohen SE. Unraveling the mechanism of action of thiazolidinediones. J Clin Invest. 2000;106(11):1305-7.

  32. Sarraf P, Mueller E, Jones D, King FJ, DeAngelo DJ, Partridge JB, Holden SA, Chen LB, Singer S, Fletcher C. Differentiation and reversal of malignant changes in colon cancer through PPARy. Nature Med. 1998;4(9):1046.

  33. Chiu S-J, Hsaio C-H, Tseng H-H, Su Y-H, Shih W-L, Lee J-W, Chuah JQ-Y. Rosiglitazone enhances the radiosensitivity of p53-mutant HT-29 human colorectal cancer cells. Biochem Biophys Res Commun. 2010;394(3):774-79.

  34. Siegel R, DeSantis C, Virgo K, Stein K, Mariotto A, Smith T, Cooper D, Gansler T, Lerro C, Fedewa S. Cancer treatment and survivorship statistics, 2012. CA Cancer J Clin. 2012;62(4):220-41.

  35. Bishehsari F, Mahdavinia M, Vacca M, Malekzadeh R, Mariani-Costantini R. Epidemiological transition of colorectal cancer in developing countries: environmental factors, molecular pathways, and opportunities for prevention. World J Gastroenterol. 2014;20(20):6055.

  36. Mohammadianpanah M. Colorectal cancer incidence: does iran follow the West. Ann Colorectal Res. 2015;3(1):e28045.

  37. Liao K-F, Lin C-L, Lai S-W. Association between colorectal cancer and thiazolidinediones administration in a case-control study. BioMedicine. 2019;9(1):4.

  38. Lin H, Hsu Y, Kachingwe B, Hsu C-Y, Uang Y, Wang L. Dose effect of thiazolidinedione on cancer risk in type 2 diabetes mellitus patients: a six-year population-based cohort study. J Clin Pharm Ther. 2014;39(4):354-60.

  39. Bosetti C, Rosato V, Buniato D, Zambon A, La Vecchia C, Corrao G. Cancer risk for patients using thiazolidinediones for type 2 diabetes: a meta-analysis. Oncologist. 2013;18(2):148-56.

  40. Liu Y, Jin P-P, Sun X-C, Hu T-T. Thiazolidinediones and risk of colorectal cancer in patients with diabetes mellitus: a meta-analysis. Saudi J Gastroenterol. 2018;24(2):75.

  41. Chen S-W, Tsan Y-T, Chen J-D, Hsieh H-I, Lee C-H, Lin H-H, Wang J-D, Chen P-C, Health Data Analysis in Taiwan Research Group. Use of thiazolidinediones and the risk of colorectal cancer in patients with diabetes: a nationwide, population-based, case-control study. Diabetes Care. 2013;36(2):369-75.

  42. Du R, Lin L, Cheng D, Xu Y, Xu M, Chen Y, Wang W, Bi Y, Li D, Lu J. Thiazolidinedione therapy and breast cancer risk in diabetic women: A systematic review and meta-analysis. Diabetes Metab Res Rev.2018;34(2):e2961.

  43. Blanquicett C, Roman J, Hart CM. Thiazolidinediones as anti-cancer agents. Cancer Ther. 2008;6(A):25.

  44. Panigrahy D, Shen LQ, Kieran MW, Kaipainen A. Therapeutic potential of thiazolidinediones as anticancer agents. Expert Opin Investig Drugs. 2003;12(12):1925-37.

  45. Wei S, Yang J, Lee S-L, Kulp SK, Chen C-S. PPARy-independent antitumor effects of thiazolidinediones. Cancer Lett. 2009;276(2):119-24.

  46. Han S, Roman J. Rosiglitazone suppresses human lung carcinoma cell growth through PPARy-dependent and PPARy-independent signal pathways. Mol Cancer Ther. 2006;5(2):430-37.

  47. Lee SY, Hur GY, Jung KH, Jung HC, Lee SY, Kim JH, Shin C, Shim JJ, In KH, Kang KH. PPAR-y agonist increase gefitinib's antitumor activity through PTEN expression. Lung Cancer. 2006;51(3):297-301.

  48. Avis I, Martinez A, Tauler J, Zudaire E, Mayburd A, Abu-Ghazaleh R, Ondrey F, Mulshine JL. Inhibitors of the arachidonic acid pathway and peroxisome proliferator-activated receptor ligands have superadditive effects on lung cancer growth inhibition. Cancer Res. 2005;65(10):4181-90.

  49. Yoshizumi T, Ohta T, Ninomiya I, Terada I, Fushida S, Fujimura T, Nishimura G-I, Shimizu K, Yi S, Miwa K. Thiazolidinedione, a peroxisome proliferator-activated receptor-y ligand, inhibits growth and metastasis of HT-29 human colon cancer cells through differentiation-promoting effects. Int J Oncol. 2004;25(3):631-39.

  50. Richard CL, Blay J. Thiazolidinedione drugs down-regulate CXCR4 expression on human colorectal cancer cells in a peroxisome proliferator activated receptor y-dependent manner. Int J Oncol. 2007;30(5):1215-22.

  51. Frohlich E, Wahl R. Chemotherapy and chemoprevention by thiazolidinediones. BioMed Res Int. 2015;2015.

  52. Brockman JA, Gupta RA, DuBois RN. Activation of PPARy leads to inhibition of anchorage-independent growth of human colorectal cancer cells. Gastroenterology. 1998;115(5):1049-55.

  53. Kim J-A, Park K-S, Kim H-I, Oh S-Y, Ahn Y, Oh J-W, Choi K-Y. Troglitazone activates p21Cip/WAF1 through the ERK pathway in HCT15 human colorectal cancer cells. Cancer Lett. 2002;179(2):185-95.

  54. Lin MS, CHEN WC, Bai X, Wang YD. Activation of peroxisome proliferator-activated receptor y inhibits cell growth via apoptosis and arrest of the cell cycle in human colorectal cancer. J Dig Dis. 2007;8(2):82-88.

  55. Lee C, Han J, Seo C, Park T, Kwon H, Jeong J, Kim I, Yun J, Bae Y, Kwak J. Pioglitazone, a synthetic ligand for PPARy, induces apoptosis in RB-deficient human colorectal cancer cells. Apoptosis. 2006;11(3):401-11.

  56. Takano S, Kubota T, Nishibori H, Hasegawa H, Ishii Y, Nitori N, Ochiai H, Okabayashi K, Kitagawa Y, Watanabe M. Pioglitazone, a ligand for peroxisome proliferator-activated receptor-y acts as an inhibitor of colon cancer liver metastasis. Anticancer Res. 2008;28(6A):3593-99.

  57. Dai Y, Qiao L, Chan KW, Zou B, Ma J, Lan HY, Gu Q, Li Z, Wang Y, Wong BL. Loss of XIAP sensitizes rosiglitazone-induced growth inhibition of colon cancer in vivo. Int J Cancer. 2008;122(12):2858-63.

  58. Miao R, Xu T, Liu L, Wang M, Jiang Y, Li J, Guo R. Rosiglitazone and retinoic acid inhibit proliferation and induce apoptosis in the HCT-15 human colorectal cancer cell line. Exp Ther Med. 2011;2(3):413-17.

  59. Lichtor T, Spagnolo A, Glick RP, Feinstein DL. PPAR- gamma thiazolidinedione agonists and immunotherapy in the treatment of brain tumors. PPAR Res. 2008;2008:547470.

  60. Gerriets VA, Kishton RJ, Nichols AG, Macintyre AN, Inoue M, Ilkayeva O, Winter PS, Liu X, Priyadharshini B, Slawinska ME. Metabolic programming and PDHK1 control CD4+ T cell subsets and inflammation. J Clin Investig. 2015;125(1):194-207.

  61. Chang C-H, Qiu J, O'Sullivan D, Buck MD, Noguchi T, Curtis JD, Chen Q, Gindin M, Gubin MM, van der Windt GJ. Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell. 2015;162(6):1229-41.

  62. Chowdhury PS, Chamoto K, Kumar A, Honjo T. PPAR-induced fatty acid oxidation in T cells increases the number of tumor-reactive CD8+ T cells and facilitates anti-PD-1 therapy. Cancer Immun Res. 2018;6(11):1375-87.