Inscrição na biblioteca: Guest
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa
Heat Transfer Research
Fator do impacto: 0.404 FI de cinco anos: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN Imprimir: 1064-2285
ISSN On-line: 2162-6561

Volumes:
Volume 51, 2020 Volume 50, 2019 Volume 49, 2018 Volume 48, 2017 Volume 47, 2016 Volume 46, 2015 Volume 45, 2014 Volume 44, 2013 Volume 43, 2012 Volume 42, 2011 Volume 41, 2010 Volume 40, 2009 Volume 39, 2008 Volume 38, 2007 Volume 37, 2006 Volume 36, 2005 Volume 35, 2004 Volume 34, 2003 Volume 33, 2002 Volume 32, 2001 Volume 31, 2000 Volume 30, 1999 Volume 29, 1998 Volume 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.2018017043
pages 1419-1429

INCREASE IN CONVECTIVE HEAT TRANSFER OVER A BACKWARD-FACING STEP IMMERSED IN A WATER-BASED TiO2 NANOFLUID

C. S. Oon
Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia; School of Built Environment, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, United Kingdom
Ahmad Amiri
Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
B. T. Chew
Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
S. N. Kazi
Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
A. Shaw
School of Built Environment, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, United Kingdom
A. Al-Shamma'a
School of Built Environment, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, United Kingdom

RESUMO

Investigation of flow separation and reattachment of 0.2% water-based TiO2 nanofluid in an annular suddenly expanding pipe is presented in this paper. Such flows occur in various engineering and heat transfer applications. A computational fluid dynamics package (FLUENT) is used to study turbulent nanofluid flow in this research. Only a quarter of an annular pipe was investigated and simulated because of its symmetrical geometry. Standard k–ε second-order implicit, pressure based-solver equations are applied. Reynolds numbers between 17,050 and 44,545, step height ratio of 1.82, and a constant heat flux of 49,050 W/m2 were utilized in simulation. The numerical simulation results show that increase in the Reynolds number leads to an increase of the heat transfer coefficient and of the Nusselt number. Moreover, the surface temperature dropped to its lowest value after the expansion and then gradually increased along the pipe. Finally, the chaotic movement and high thermal conductivity of the TiO2 nanoparticles have contributed to the overall heat transfer enhancement of the nanofluid.


Articles with similar content:

PRESSURE LOSS AND HEAT TRANSFER THROUGH MULTIPLE ROWS OF SHORT PIN FINS
International Heat Transfer Conference 7, Vol.6, 1982, issue
Z. X. Fan, D. E. Metzger, W. B. Shepard
NUMERICAL STUDY OF THE EFFECT OF SIDE-WALL INCLINATION ANGLES ON NATURAL CONVECTION IN A 3D TRAPEZOIDAL ENCLOSURE FILLED WITH TWO-LAYER NANOFLUID AND AIR
Heat Transfer Research, Vol.49, 2018, issue 9
Emad Hasani Malekshah, Mahmoud Salari, Masoud Hasani Malekshah
A NUMERICAL STUDY OF AXISYMMETRIC PULSATING JET IMPINGEMENT HEAT TRANSFER
International Heat Transfer Conference 13, Vol.0, 2006, issue
F. Ahrens, Wichit Liewkongsataporn, T. Patterson
HEAT TRANSFER CHARACTERISTICS IN A CAVITY WITH VISCO-ELASTIC HYDRATE PARTICLE SLURRIES
International Heat Transfer Conference 13, Vol.0, 2006, issue
Hiroshi Suzuki, Yoshiyuki Komoda, Hideyuki Usui, Shunsuke Yamada, Y. S. Indartono, R. Nakamura
EFFECT OF NANOFLUID VARIABLE PROPERTIES ON MIXED CONVECTION FLOW AND HEAT TRANSFER IN AN INCLINED TWO-SIDED LID-DRIVEN CAVITY WITH SINUSOIDAL HEATING ON SIDEWALLS
Heat Transfer Research, Vol.45, 2014, issue 5
Davood Semiromi Toghraie, Masoud Afrand, Mohammad Akbari, Arash Karimipour, Mohammad Hemmat Esfe