Inscrição na biblioteca: Guest
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa
Heat Transfer Research
Fator do impacto: 0.404 FI de cinco anos: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN Imprimir: 1064-2285
ISSN On-line: 2162-6561

Volumes:
Volume 50, 2019 Volume 49, 2018 Volume 48, 2017 Volume 47, 2016 Volume 46, 2015 Volume 45, 2014 Volume 44, 2013 Volume 43, 2012 Volume 42, 2011 Volume 41, 2010 Volume 40, 2009 Volume 39, 2008 Volume 38, 2007 Volume 37, 2006 Volume 36, 2005 Volume 35, 2004 Volume 34, 2003 Volume 33, 2002 Volume 32, 2001 Volume 31, 2000 Volume 30, 1999 Volume 29, 1998 Volume 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.v37.i4.50
pages 349-363

Estimation of the Thermohydraulic Efficiency of Heat Exchanging Apparatuses with Twisted Tubes

Boris V. Dzyubenko
Moscow Aviation Institute (State Technical University), 4 Volokolamskoe Highway, Moscow, 125993, Russia

RESUMO

The paper presents generalizing relations to calculate heat transfer and hydraulic resistance in longitudinal flow of heat-transfer agents in the cavities of a heat exchanger with twisted tubes and the results of comparison of the thermohydraulic efficiency of the heat-transfer surfaces of the twisted tubes with the surfaces of smooth tubes and tubes having other heat-transfer intensifiers. It has been found that in the flow transition region Reynolds-related regimes with an advanced increase in the heat-transfer coefficient in comparison with the increase in the coefficient of hydraulic resistance is implemented. In a longitudinal flow past twisted tubes, a 1.5−3.5-fold increase in the heat-transfer coefficient is ensured, as compared to flow in smooth straight tubes. The estimation of the thermohydraulic efficiency of heat exchangers made by the method of effective parameters and the analysis of the efficiency of various heat-transfer surfaces made it possible to find the flow regions where the heat-exchange apparatuses with flow swirling by twisted tubes are advantageous over heat exchangers involving other methods of heat-transfer enhancement.


Articles with similar content:

Influence of Flow Twisting on Convective Heat Transfer in Banks of Twisted Tubes
Heat Transfer Research, Vol.36, 2005, issue 6
Boris V. Dzyubenko
CHOICE AND JUSTIFICATION OF THE HEAT TRANSFER INTENSIFICATION METHODS
Journal of Enhanced Heat Transfer, Vol.25, 2018, issue 6
Yury A. Kuzma-Kichta, Alexander I. Leontiev
Efficiency of Heat Transfer Surfaces Using the Method of Effective Parameters
Heat Transfer Research, Vol.32, 2001, issue 7&8
R. I. Yakimenko, Boris V. Dzyubenko
HYDRODYNAMICS AND HEAT TRANSFER IN TUBES WITH SMOOTH AND RIBBED TWISTED TAPE INSERTS
Journal of Enhanced Heat Transfer, Vol.20, 2013, issue 6
Anatoly B. Yakovlev, Andrey V. Shishkin, Artur A. Giniyatullin, Stanislav E. Tarasevich
HEAT TRANSFER AND CRISIS PHENOMENA AT BOILING OF REFRIGERANT FILMS FALLING DOWN THE SURFACES OBTAINED BY DEFORMATIONAL CUTTING
Interfacial Phenomena and Heat Transfer, Vol.5, 2017, issue 3
Nikolay Zubkov, Aleksandr N. Pavlenko, Oleg A. Volodin, Nikolay I. Pecherkin