Inscrição na biblioteca: Guest
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa
Heat Transfer Research
Fator do impacto: 0.404 FI de cinco anos: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN Imprimir: 1064-2285
ISSN On-line: 2162-6561

Volumes:
Volume 51, 2020 Volume 50, 2019 Volume 49, 2018 Volume 48, 2017 Volume 47, 2016 Volume 46, 2015 Volume 45, 2014 Volume 44, 2013 Volume 43, 2012 Volume 42, 2011 Volume 41, 2010 Volume 40, 2009 Volume 39, 2008 Volume 38, 2007 Volume 37, 2006 Volume 36, 2005 Volume 35, 2004 Volume 34, 2003 Volume 33, 2002 Volume 32, 2001 Volume 31, 2000 Volume 30, 1999 Volume 29, 1998 Volume 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.2014006034
pages 471-484

STRUCTURAL IDENTIFICATION OF A THERMAL PROCESS USING THE VOLTERRA MODEL

Safa Chouchane
Research Unit ATSI, National School of Engineers of Monastir, University of Monastir, Rue Ibn El Jazzar, 5019 Monastir, Tunisia
Kais Bouzrara
Research Unit ATSI, National School of Engineers of Monastir, University of Monastir, Rue Ibn El Jazzar, 5019 Monastir, Tunisia
Hassani Messaoud
Research Unit ATSI, National School of Engineers of Monastir, University of Monastir, Rue Ibn El Jazzar, 5019 Monastir, Tunisia

RESUMO

This paper proposes a new method to estimate, from input/output measurements, the structural parameters (order and memory) of the Volterra models used for describing a nonlinear thermal process, the Trainer PT326. The proposed estimation method is an extension of the recent work in which a new algorithm for estimating the memory of the Volterra model was proposed. The structure parameters identification method, proposed in this paper, is based on the definition of a specific matrix whose components are lagged inputs and lagged outputs. We prove that this matrix becomes singular once the parameter value exceeds its exact value. The estimated values of the order and the memory are used to provide a suitable Volterra model for the Process Trainer PT326. The performance of the model and the identification method that uses experimental data are evaluated.