Inscrição na biblioteca: Guest
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa
Heat Transfer Research
Fator do impacto: 0.404 FI de cinco anos: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN Imprimir: 1064-2285
ISSN On-line: 2162-6561

Volumes:
Volume 50, 2019 Volume 49, 2018 Volume 48, 2017 Volume 47, 2016 Volume 46, 2015 Volume 45, 2014 Volume 44, 2013 Volume 43, 2012 Volume 42, 2011 Volume 41, 2010 Volume 40, 2009 Volume 39, 2008 Volume 38, 2007 Volume 37, 2006 Volume 36, 2005 Volume 35, 2004 Volume 34, 2003 Volume 33, 2002 Volume 32, 2001 Volume 31, 2000 Volume 30, 1999 Volume 29, 1998 Volume 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.2018016244
pages 1403-1417

ANALYSIS OF HEAT AND MASS TRANSFER IN UNSTEADY NANOFLUID FLOW BETWEEN MOVING DISKS WITH CHEMICAL REACTION — A NUMERICAL STUDY

Muhammad Farooq Iqbal
Centre for Advanced Studies in Pure and Applied Mathematics, (CASPAM), Bahauddin Zakariya University, (BZU), Multan, 608000 Pakistan
Shahzad Ahmad
Center for Advanced Studies in Pure and Applied Mathematics, Bahauddin Zakariya University, Multan, Pakistan
Kashif Ali
Department of Basic Sciences and Humanities, Muhammad Nawaz Sharif University of Engineering and Technology, Multan, Pakistan
Muhammad Zubair Akbar
Center for Advanced Studies in Pure and Applied Mathematics, Bahauddin Zakariya University, Multan, Pakistan
Muhammad Ashraf
Center for Advanced Studies in Pure and Applied Mathematics, Bahauddin Zakariya University, Multan, Pakistan

RESUMO

The study is devoted to the analysis of heat and mass transfer in an unsteady hydromagnetic viscous incompressible water-based nanofluid flow between two orthogonally moving porous coaxial disks with suction. Similarity transformation is used to convert the governing partial differential equations into a system of coupled nonlinear ODEs which are then solved by employing an algorithm based on the quasi-linearization and the finite difference discretization. Viscous dissipation and the chemical reaction effects have also been taken into account. Influence of the governing parameters on the heat and mass transfer characteristics of the problem has been presented through tables and graphs. The outcome of the investigation may be valuable for the electronic industry in maintaining the electronic components under effective and safe operational conditions.


Articles with similar content:

FINITE ELEMENT SIMULATION OF UNSTEADY THIRD−GRADE FLOW WITH TEMPERATURE−DEPENDENT FLUID PROPERTIES
Journal of Porous Media, Vol.19, 2016, issue 3
Rama Bhargava, Minakshi Poonia
NANOFLUID FLOW OVER A NONLINEAR STRETCHING SHEET IN POROUS MEDIA WITH MHD AND VISCOUS DISSIPATION EFFECTS
Journal of Porous Media, Vol.17, 2014, issue 5
Precious Sibanda, Ahmed A. Khidir
VISCOUS DISSIPATION EFFECT FOR DOUBLE DIFFUSIVE FREE CONVECTION FLOW ALONG A VERTICAL PLATE EMBEDDED IN A POROUS MEDIUM SATURATED WITH A NANOFLUID
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2017, issue
Annis Aghbari , Djamel Sadaoui , Hamza Ali Agha
EFFECT OF VISCOUS DISSIPATION ON MHD MIXED CONVECTIVE FLOW OVER A VERTICAL WEDGE EMBEDDED IN A POROUS MEDIUM WITH NONUNIFORM SLOT SUCTION OR INJECTION
Journal of Porous Media, Vol.19, 2016, issue 1
N. Samyuktha, R. Ravindran, M. Ganapathirao
NUMERICAL EXAMINATION OF MHD NONLINEAR RADIATIVE SLIP MOTION OF NON-NEWTONIAN FLUID ACROSS A STRETCHING SHEET IN THE PRESENCE OF A POROUS MEDIUM
Heat Transfer Research, Vol.50, 2019, issue 12
J. V. Ramana Reddy, V. Sugunamma, N. Sandeep, Kempannagari Anantha Kumar